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Neural representations for sensory-motor 
control, I: Head-centered 3-D target 
positions from opponent eye commands 

Douglas Greve *, Stephen Grossberg * *, Frank Guenther * 
and Daniel Bullock * 
Boston University, Boston, USA 

This article describes how corollary discharges from outflow eye movement commands can be 
transformed by two stages of opponent neural processing into a head-centered representation of 
3-D target position. This representation implicitly defines a cyclopean coordinate system whose 
variables approximate the binocular vergence and spherical horizontal and vertical angles with 
respect to the observer’s head. Various psychophysical data concerning binocular distance 
perception and reaching behavior are clarified by this representation. The representation 
provides a foundation for learning head-centered and body-centered invariant representations of 
both foveated and non-foveated 3-D target positions. It also enables a solution to be developed 
of the classical motor equivalence problem, whereby many different joint configurations of a 
redundant manipulator can all be used to realize a desired trajectory in 3-D space. 

Spatial representations for the neural control of flexible movements 

The present article introduces a neural network model of how the 
brain forms spatial representations with which to control sensory- 
guided and memory-guided eye and limb movements. These spatial 
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representations are expressed in both head-centered coordinates and 
body-centered coordinates because the eyes move within the head, 
whereas the head, arms, and legs move with respect to the body. We 
analyze a key process in the formation of spatial representations 
whereby humans and other mammals can skillfully act upon objects in 
3-dimensional space despite the variable relative location of sensing 
and acting segments. 

The spatial relationships to which we have been led are built up 
from the same types of computations that are used to control motor 
commands. This observation leads to a general design theme of our 
work. We inquire into the natural form of neural computations that 
are appropriate for representation and control of a bilaterally sym- 
metric body. Bilateral symmetry leads to the use of competitive and 
cooperative interactions among bilaterally symmetric body segments. 
These include opponent interactions between pairs of antagonistic 
neurons that measure one or another type of spatial or motor offset 
with respect to an axis of symmetry. Based on the present results, we 
show elsewhere how a 3-dimensional space can self-organize and 
learn to control synchronous variable-speed and variable-size trajecto- 
ries of a 3-joint arm, with or without a tool of variable length. 

Geometry and psychophysics of object localization 

This section surveys key geometrical and psychophysical data perti- 
nent to the model. The following two sections describe how two 
successive stages of opponent interactions based on eye movement 
outflow commands can generate the type of head-centered represen- 
tation that is suggested by these data. These results have been 
announced in Bullock et al. (1992a). 

During eye-hand coordination, both eyes typically fixate a target 
before or while a hand reaches towards it. Vision, in particular the 
binocular disparity of an object’s image on the retinas of both eyes, 
provides important cues to the relative 3-D positions of objects with 
respect to the head. However, such visual information cannot explain 
all cases of accurate reaching toward binocularly foveated targets. In 
particular, it cannot explain cases of ‘blind reaching’ (e.g. Soechting 
and Flanders 1989). In blind reaching experiments, a subject first 
binocularly foveates a target, then reaches to the target without 
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on-line visual feedback regarding the relative positions of the target 
and the moving hand. The approximate accuracy of such blind reaches 
suggests the availability of absolute distance information. 

This is important because binocular disparity does not provide 
unambiguous information about absolute distance. For example, sup- 
pose that the eyes binocularly foveate a succession of locations in the 
interior of an object. During this series of fixations, a binocular 
disparity can be computed for any point P on the boundary. However, 
though distance from P to the observer is invariant during the fixation 
series, the binocular disparities computed for P may be quite variable. 
Moreover, conditions are even worse at the fixation point itself. When 
both eyes fixate the same location in space, then the binocular 
disparity of this location on the retinas equals zero, no matter how 
near or far the object may be from the observer. Thus, fixated points 
cannot accurately be reached using information about such points’ 
own binocular disparity. Since our primary goal in the present article 
is to analyse how reaching towards fixated objects is controlled, we 
need to consider other sources of information than retinal, or visual, 
information. 

The bilaterally symmetric organization of the body provides an- 
other, non-visual source of information for computing absolute dis- 
tance of a fixated target from an observer’s head and body. When 
both eyes binocularly fixate a target, the point of intersection of the 
lines of gaze may be used to compute the absolute distance and 
direction of the fixation point with respect to the head. Such extrareti- 
nal information may also be used to complement visual processing to 
derive better estimates of the absolute distance and direction of 
visually detected but non-fixated objects. 

The intersection point of the lines of gaze moves with the mobile 
eyes within a roughly conical 3-D volume that opens out in front of 
the head with apex between the eyes and horizontal and vertical 
bounds determined by the limits of ocular rotation. Clues to the 
nature of this 3-D coordinate system can be found in the experimental 
literature on the role of extraretinal information in visual object 
localization. For example, Foley (1980) has summarized evidence that 
extraretinal signals are used to compute the absolute distance be- 
tween a binocular fixation point and the midpoint between the eyes, 
which we will call the cranial egocenter. If we take this radial distance, 
R,, as one dimension of a 3-D coordinate system, it suggests the 
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Fig. 1. Illustration of relationships between spherical coordinates 4, 0, R and Cartesian coordi- 
nates x, y. z. Both coordinate systems have origins centered between the eyes. The x-z plane 
origin is the midpoint of a y-axis segment drawn between the ocular centers of rotation, and the 
z-axis is parallel to the gravity vector during upright posture. Thus the x-axis always points 
‘straight ahead’. Radius R is measured from the origin to the binocular fixation point on the 
object. Elevation 4 (left panel) is the angle between the radius and a line in the x-y plane. This 
line connects the origin to the point where a ray from the fixation point is normal to the x-y 

plane. Azimuth 0 is defined similarly, but with respect to the x - .z plane. 

relevance of a spherical egocentric coordinate system for 3-D object 
localization, in which the other two coordinates are horizontal angle 
or azimuth, 8,, and vertical angle or elevation, 4H, as shown in fig. 1. 
More direct evidence for the use of a representation akin to a 
spherical egocentric coordinate system came from a recent study of 
the accuracy of pointing to objects in nearby space without simultane- 
ous vision of hand and object (Soechting and Flanders 1989). This task 
is pertinent because, without simultaneous vision of object and hand, 
pointing errors are sensitive to errors in locating the point of fixation 
on the object relative to the body prior to the reach. Soechting and 
Flanders concluded that an egocentric spherical coordinate represen- 
tation of spatial location with respect to the shoulder gave a more 
parsimonious account of variability in the data than either a Cartesian 
or a cylindrical coordinate representation. 

An internal spatial representation akin to spherical coordinates has 
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several advantages for the control of reaching. Movements of the arm 
with wrist and finger joints fixed are readily represented in a spherical 
coordinate frame based at the shoulder. Arm movements due to 
shoulder rotation correspond to changes primarily in the spherical 
angles 0 and 4, whereas bending of the elbow relates primarily to the 
spherical coordinate R. These properties simplify the task of trans- 
forming from spatial coordinates to arm trajectories, as hypothesized 
by Soechting and Flanders (1989). The close relationship between 
spherical spatial coordinates and joint coordinates is illustrated in fig. 
2. Hollerbach et al. (1986) plotted trajectories for the fingertip, wrist, 
elbow, and shoulder during free reaches in the sagittal plane through 
the shoulder. The form of these trajectories, reprinted in fig. 2a, led 
Hollerbach et al. to propose that they were produced by linearly 
interpolating between initial and final coordinates in the joint space 
defined by arm geometry. Fig. 2b shows trajectories that we have 
simulated between the endpoints of the fingertip paths of Hollerbach 
et al. (1986). However, our simulations used linear interpolation in a 
head-centered spherical coordinate space. The correspondence be- 
tween the simulated trajectories in fig. 2b and the human trajectories 
in fig. 2a indicates that the observed trajectories are as consistent with 
spherical space interpolation as with joint-space interpolation. The 
same could not be said for Cartesian space interpolation. 

Although comparing the relative merits of spherical and Cartesian 
coordinates is of heuristic value, such comparisons ultimately cannot 
solve the problem of 3-D spatial representation by the brain. Coordi- 
nate values such as R,, OH, and 4H can, at best, be computed 
implicitly as an emergent property of interacting, locally computed 
neural variables. The values of these variables can, moreover, change 
adaptively as a behaving animal develops and grows in ever-changing 
internal and external environments. Our task is to understand how the 
data may approximate values expected from spherical coordinates in 
some situations, but not in others. In particular, fingertip trajectories 
forming nearly straight lines in Cartesian coordinates are found in 
some parts of the arm movement workspace (Morass0 1981). 

Our analysis considers the types of information about position of 
the eyes in the head, the head in the body, and the arms in the body 
that may combine to generate an implicit representation of target 
position with respect to the head, body, or arm. In order to under- 
stand how these representations may arise, it is useful to consider 
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(b) 

Radius (inches) 

Fig. 3. The geometry of binocular fixation of 3-D target positions by the left CL) and right (R) 
eyes. See the text for details. 

geometrical relations that obtain once a binocular system has success- 
fully foveated an object. 

Fig. 3a illustrates that the intersection point of the lines of sight of 
the two eyes converges toward the nose as the two eyes rotate to 
foveate increasingly close objects that are straight ahead. The rotation 
centers of the two eyes together with the fixated point on the object 
form a triangle, whose three angles add to 180 degrees. The angles of 
the two eyes in their orbits thus jointly specify the angle y between 
the lines of sight that intersect at the fixation point. Angle y is 
commonly referred to as the binocular parallax (Foley 1980). This 
triangular structure linking observer and object also allows an internal 
measure of net ocular vergence - the extent to which the eyes are 
rotated towards the nose - to serve as one basis for estimating the 
distance from egocenter to a binocularly foveated object. 
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In order to understand how the parameters (Y, p, and y in fig. 3a 
scale with viewing distance and the line of sight, two questions need to 
be answered: How well does a fixed binocular parallax, y, or equiva- 
lently a constant sum (Y + p of the nasal deviations of the two eyes in 
their orbits, represent a constant distance from the egocenter to a 
fixation point on the object as a! and p vary? How well does binocular 
parallax estimate the distance along any given line of sight? 

To answer the first question, consider the two circles in fig. 3b. The 
smaller circle, known as a Vieth-Miiller circle (Blank 19781, is a curve 
passing through a point P, that is located directly in front of an 
observer’s eyes, and through the rotation centers, L and 'R, of the 
eyes themselves. The Vieth-Miiller (V-M) circle is special because all 
binocularly fixated points on the circle have the same binocular 
parallax y. The larger circle in fig. 3b is the curve formed by points 
whose distances equal that of P, from the egocenter. The divergence 
of these two circles indicates that binocular parallax, by itself, is not 
an accurate measure of absolute radial distance from the egocenter. 
Likewise, internal signals that measure only net binocular vergence 
cannot veridically specify absolute radial distance. 

The V-M circle shows that binocular parallax is an increasingly 
poor measure of radial distance at extreme gaze angles (large (Y or p). 
Fig. 3c shows a second potential shortcoming of using binocular 
parallax by itself as an indicator of distance from egocenter, even for 
objects that lie straight ahead. The function relating an object’s 
absolute distance from egocenter to its binocular parallax is markedly 
nonlinear. This means that any neural sites whose activity levels 
veridically register vergence angle would use a disproportionate part 
of their dynamic range to represent a relatively small zone of nearby 
R, values. Although this nonlinearity can be compensated by a 
nonlinear neural transduction, far-distance estimates would remain 
intrinsically more prone to errors caused by inaccuracies of vergence 
or by noise at the cellular sites that register vergence. 

Although vergence, by itself, is insufficient to measure binocular 
distance, it is now generally accepted that a vergence-related signal is 
used in binocular perception. For example, stereoscope experiments 
have shown that a decrease in apparent stimulus size can be caused by 
holding the retinal size of an artificial binocular stimulus constant, 
while increasing the vergence angle needed for fusion (Rock 1984). 
Although this demonstration shows that the system is susceptible to 
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illusions, the observed relationship between vergence and apparent 
size is best explained as a by-product of nature’s solution to the 
problem of computing true stimulus size. Because an object of fixed 
size subtends a smaller retinal region the more distant it is from an 
observer, retinal image size is not an accurate measure of true object 
size. By combining retinal size and binocular disparity with a distance 
measure derived from vergence angle, the nervous system can com- 
pute a better estimate of true object size than that afforded by retinal 
size alone. 

On the basis of an extensive survey of prior theory and data about 
binocular distance perception, Foley concluded that an egocentric 
distance signal does exist, and that it ‘appears to be of extraretinal 
origin and . . . related to the vergence of the eyes’ (1980: 411). He was 
able to model a large corpus of data from several kinds of experiments 
on matching of apparent distance. His model computes an effective 
binocular parallax y’ prior to transformation into perceived distance. 
The effective binocular parallax y’ does not equal the real binocular 
parallax. Foley reviewed evidence that the relation between the psy- 
chological variable y’ and the physical variable y is well approximated 
by: 

y’=A+By,O<A<2”,O<B<l. (1) 

By (l), veridical registration of binocular parallax obtains if A = 0 
and B = 1. Because the perceptual system acts as if A > 0, even 
objects at optical infinity (y = 0) are perceptually registered at finite 
distance. Because B < 1, nearby objects (y s- 0) are registered as 
farther than they are. In the fourth section, we show that values for A 
and B in the range observed by Foley emerge naturally within a 
simple neural network for computing vergence from opponent combi- 
nations of oculomotor outflow signals. When optimally tuned, this 
neural network approximates the ideal values A = 0 and B = 1. 

Another important psychophysical issue is raised by the need, 
illustrated in fig. 3b, to increasingly amplify the effect of the vergence 
signal on perceived closeness as the angle of the foveated object 
relative to straight-ahead increases. Such an amplification has been 
observed by Blank, who noted that ‘an actual circle of apparent 
equidistance from the observer is somewhat flatter than a Vieth-Miiller 
circle’ (1978: 89). This means that in a perceived-distance matching 
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task, a target initially at P2 in fig. 3b would be pushed outward by the 
subject toward point P, to create a target perceived to be at a 
distance from the cranial egocenter equal to the distance of fixed 
point P,. Thus a target at P2 is perceived closer than Pi, consistent 
with physical reality and with the hypothesis that apparent distance is 
influenced both by the vergence y and the head-centered deviation 
0,. For one well-studied subject who matched the apparent distances 
of a set of targets to a reference target while elevation 4H was held 
constant, Blank (1978: 95) found this interaction to be well approxi- 
mated by: 

G(y,eH) = 1 _ oy19e2 . 
’ H 

In the fourth section, we describe a neural network for 3-D local- 
ization that clarifies how variables such as y, OH, and +H are neurally 
estimated. 

Adaptive linearization via cerebellar learning of motor responses to 
outflow eye movement commands 

An internal representation of the 3-D location of a target with 
respect to the head can be derived from the commands that hold the 
eyes in place while they are fixating the target. These commands are 
calibrated in motor coordinates that are capable of controlling eye 
muscle contractions and relaxations. Fig. 4 indicates the movements of 
each eye that are caused by each of its six extraocular muscles when it 
operates alone. The agonist-antagonist muscle pair consisting of the 
lateral rectus and medial rectus controls the horizontal angle, 0, of an 
eye. Two agonist-antagonist pairs, the inferior oblique and superior 
oblique, and the superior rectus and inferior rectus, work together to 
control the vertical angle, 4, of the eye. These angles were defined in 
fig. 1, calibrated with respect to the egocenter. Fig. 5 illustrates that a 
target has different angles with respect to the egocenter and each of 
the two ocular centers of rotation. The subscript L denotes spherical 
coordinates with the origin at the left eye, subscript R denotes an 
origin at the right eye, and subscript H denotes an origin centered 
between the left and right eyes. 
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INPERIOR 
OBLKXIE 

Kx& * 

) MEDIAL 
RECTUS 

I, 

SUPERIOR 
OBLIQUE 

Fig. 4. The direction of movement caused by each muscle of the eye when acting alone. The 
diagram corresponds to the right eye as seen by an observer. Thus the medical rectus pulls the 

eye noseward. 

It is shown below how signals derived from the commands that 
control the left eye and the right eye can be combined to create a 
head-centered ‘cyclopean’ representation that is centered between the 
two eyes. These signals are corollary discharges of the outflow move- 
ment commands (von Helmholtz 1962). Corollary discharges change 
linearly with outflow movement commands, but do not themselves 
cause movements. In order for a corollary discharge to accurately 
represent eye position, the eye muscles must contract linearly in 
response to these outflow movement commands. Equal changes in 
these commands need to cause (approximately) equal eye rotations 
regardless of the eye’s initial position in its orbit. It is, however, 
known that the eye muscle plant is nonlinear (Robinson 1970; Schiller 
19701, and that its characteristics can change during the lifespan of an 
individual. Grossberg and Kuperstein (1986, 1989: chapter 5) have 
shown how the mismatch between outflow signals (derived from 
movement commands) and inflow signals (derived from muscle sen- 
sors) may combine to define an error signal that calibrates how 
nonlinear the muscle plant is at each commanded eye position. These 
mismatch signals drive an error-based learning process that is sug- 
gested to take place in the cerebellum. Learned cerebellar output 
signals are suggested to modify the total movement command in a way 
that adaptively linearizes the response of a nonlinear muscle plant to 
the movement commands that it received. As a result of this learned 
compensation, corollary discharges of outflow movement commands 
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I 

LEFT 
EYE 

Fig. 5. The angles 0 for the three different origins corresponding to a target projected onto the 

x-y plane. 

can be used as eye position signals even if the muscle plant’s nonlinear 
characteristics change through time. 

Grossberg and Kuperstein have used this model to explain a variety 
of behavioral and neural data concerning eye and arm movements, 
including data about pointing behavior after strabismus surgery 
(Steinbach and Smith 1981>, the role of the cerebellum in preventing 
dysmetria (Robinson 1973; Vilis et al. 19831, and the existence of 
saccade-related direct response cells in the dentate nucleus of the 
cerebellum (Ron and Robinson 1973). 

Opponent interactions generate head-centered coordinates for repre- 
sentation of 3-D space 

We now show how to binocularly combine outflow signals from the 
tonically active cells that control the position of each eye (fig. 6) in 
such a way as to form a head-centered representation of a foveated 
target. First, opponent interactions combine the outputs of the cells 
that control the agonist and antagonist muscle of each eye (fig. 7). 
These opponent interactions give rise to opponent pairs of cells whose 
total activity is approximately constant, or normalized. This normaliza- 
tion property renders the outflow movement commands of each eye 
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Fig. 6. Notation for the horizontal outflow signals that control the opponent muscles of both 
eyes. 

‘dimensionless’, and allows the normalized opponent cells to control a 
variety of eye movement processes, notably corollary discharges, that 
might otherwise be improperly scaled (Grossberg and Kuperstein 
1989). 

Fig. 7. Network for combining corollary discharges from both eyes, via two stages of opponent 

processing, into two components of a head-centered representation of 3-D target position. The 

first stage computes normalized activities Zi and ri. The second stage uses these normalized 

activities as inputs to compute an estimate h, of horizontal angle and an estimate V of binocular 
vergence, which correlates with radial distance. Plus and minus signs indicate excitation and 

inhibition, not addition and subtraction. 
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Next, the normalized outputs from both eyes are combined in two 
different ways to generate the type of head-centered spatial represen- 
tation of the binocular fixation point that was suggested by the data 
reviewed in the second section. This head-centered representation 
arises from simple rules for opponent processing of the normalized 
eye movement corollary discharges. In particular, opponent cells from 
each eye generate inputs of opposite sign (excitatory and inhibitory) to 
their target cells at the next processing stage. As illustrated in fig. 7, 
one combination gives rise to cells whose activities approximate the 
angular spherical coordinate 8,. The other combination gives rise to 
cells whose activities approximate the binocular vergence y, which in 
turn can be used to estimate the radial distance R,. The two combi- 
nations generate head-centered coordinates by computing a sum and 
a difference of the normalized opponent inputs from both eyes. Such 
a general strategy for combining signals is well-known in other neural 
systems, such as color vision. For example, a sum L + A4 of signals 
from two color vision channels estimates luminance, whereas a differ- 
ence L -M estimates color (DeValois and DeValois 1975; Mollon 
and Sharpe 1983). Thus the computations that may be used to control 
reaching in 3-D space seem to derive from a broadly used principle of 
neural computation. 

A neural mechanism for normalizing the total activity of opponent 
cells is well-known (Grossberg 1982). It uses a shunting on-center 
off-surround network, that is, an opponent interaction wherein the 
target cells obey a membrane equation (Hodgkin 1964; Katz 1966). In 
particular, suppose that the agonist and antagonist cells that control 
the horizontal position of the left eye have activities L, and L,, 
respectively, as in fig. 6. Let the normalized opponent cells in the 
shunting network have activities 1, and 1,. Suppose that 

ill = -Cl, + (1 - Z,)L, - Z,L,, 

and 

$1, = -a, + (1 - Z,)L, - Z,L,. 

(3) 

By eq. (31, activity L, excites E, whereas activity L, inhibits I,. The 
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opposite is true in eq. (4). Parameter C is the decay rate. At equilib- 
rium, (d/dt)Z, = (d/dt)Z, = 0, so (3) and (4) imply that 

I, = 
L2 

c+L,+L,’ 

Adding (5) and (6) shows that 

I, + 1, = 
Ll +J% 

c+L,+L,’ 

Thus if C-=cL,+L,, 

l,+l,~l. (8) 

The approximation (8) will be used below for all normalized pairs of 
opponent cells. In particular, we assume that the activities of oppo- 
nent cell populations that control agonist-antagonist muscle pairs are 
normalized so that the total activity of each cellular pair is fixed at 
unity. This ensures that increasing the activity of the agonist control 
cell results in a corresponding decrease in the activity of its antagonist 
control cell. To illustrate these relationships, fig. 7 shows the two 
cellular pairs needed to control 8, and 8,. These pairs are labelled by 
the variables I,, I, and ri, r2, which measure corresponding cellular 
activities. Thus, the following equations define the internal represen- 
tations of the horizontal angle of each eye: 

1, + 1, = 1 (9) 

f3,= -90”+18o”xZ,, (IO) 

rl +r,= 1, (11) 

8,= -90”+180”xr,, (12) 
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where li indicates the activity of left eye cell population i and ri 
indicates the activity of right eye cell population i. These equations 
assume that the eye muscles respond linearly to their outflow move- 
ment signals as a result of adaptive linearization (see previous section). 

Internal representations for the vertical angles of left and right eyes 
may be defined similarly. Thus 

1,+1,=1, (13) 

&= -90”+180”xz,, (14) 

r,+r,= 1, (15) 

&= -9O”+ 180”xr,. (16) 

To provide a head-centered representation of 3-D space - in 
particular, of the binocular fixation point - corollary discharges of the 
two eyes are combined. Let the cell populations h,,i = 1, 2, . . . , 6, 
form the basis for this head-centered spatial representation. These 
populations are also arranged in antagonistic pairs. First we show how 
h,, h,, h,, and h, closely approximate the following linear relation- 
ships with respect to 8, and 4H: 

h, +h,= 1, (17) 

8,= -90”+180”xh,, (18) 

h,+h,= 1, (19) 

4H= -90”+180”xh,. (20) 

These veridical head-centered binocular representations of 6, and 
4H emerge by simply averaging the corresponding monocular compo- 
nents derived from the left and right eye muscle command corollary 
discharges using a shunting on-center off-surround network. The 
connectivity of such a network is shown in fig. 7 for the cell activity h, 

which represents 8,. In particular, 

;h2 = -Dh, + (1 -h&Z, + r2) - h,(Z, + Q), (21) 
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where D is the decay rate. Solving this equation at equilibrium 
(dh,/dt = 0) yields 

h,= 
12 + r2 

D + 1, + rl + I, + r2 ’ 
(22) 

Since 1, + I, G 1 and rI + r2 = 1, choosing a small decay parameter D 
leads to the approximation: 

12 + r2 
h,z ~ 

2 * 
(23) 

Likewise, an antagonist cell with activity h, can be created by ex- 
changing indices 1 and 2 throughout eq. (21). The equilibrium activity 
h, of this cell would be approximated by 

I,+ I1 
h, z - 

2 ’ 
(24) 

so that, by (23) and (24), 

h,+h,=l. (25) 

Activities h, and h, can be similarly computed from corollary 
discharges of vertical muscle command cells to form an antagonistic 
internal representation of c$~. To evaluate the adequacy of the 
internal representation of 8, and 4H, a distortion measure was 
calculated by dividing the change in the internally represented angle 
of two successively foveated points by the actual change in angle of 
the successively foveated points for small changes throughout the 
workspace. For example, Let t9JeH, RH) be the internally repre- 
sented horizontal angle, as defined by (18) and (23), that arises within 
the model when the muscle length commands Zj and ri are set to the 
values needed to achieve binocular foveation of a point in space with 
an actual horizontal angle 8, and radius R,. The internal representa- 
tion for 0, is independent of vertical angle 4H. The distortion 
measure at (e,, RH) is then calculated as: 

% distortion( 8,) RH) 

i 

‘int(‘H + AeHp RH) - eint(eIf7 RH) = 
A% 

- 1 x 100. 
I 

(26) 
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Here the ratio of internal to external angular changes is compared to 
a reference value of one because a gain of one between input and 
output is required for veridical registration of 8,. A Atl, of 1” was 
chosen for the plots. Given some point in head-centered space (R,, 
f3,, &H) and a distance d between the eyes, the angles that each eye 
must assume in order to foveate that point are given by the following 
equations, which are derived from the geometry shown in figs. 1 and 
5: 

eL = tan-’ 

8, = tan-l 

+L = sin-’ 

+R = sin-l 

R,sinB,tt 

R, cos e, 

d 
R, sin 8,-y 

R, cos e, 

(27) 

(28) 

R, sin c$~ 

R, sin 8, + % 
2 

+ (R, cos OH)’ 

R, sin $H 

\ 

. 

I 

(29) 

R,sin&-g 
d 

2 

?I-R,cos& 

(30) 

The distortion measure was calculated for a workspace defined by 
- 45” < 8, < 45”, - 45” < +n < 45”, and 3 inches < R, < 30 inches (7.6 
cm <R, < 76 cm). This workspace was chosen to approximate the 
cone within which both binocular foveation and reaching to a target 
are possible in humans. 

Fig. 8 shows the distortion measure for the internal representation 
of 8, throughout the workspace. The distortion in this range is less 
than 15%, with essentially 0% distortion for R, > 5 inches. Thus, the 
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10 

Fig. 8. Percent distortion for 0, throughout the workspace. See text for details on distortion 
measure. 

opponent network defined above provides an accurate mechanism for 
computing an internal representation of 0,. 

The distortion measure for c$~ depends on R,, r#~~, and 0,. Figs. 
9, 10, and 11 show the distortion measure for 4H with 8, = o”, 22.5”, 
and 45”, respectively. For 19, = 0” and 22.5”, distortion is again less 
than 15% everywhere and essentially 0% for R, > 5 inches. For 
8, = 45”, the distortion goes as high as almost 50% for very small R,, 
but again is very small for R, > 5 inches or for rpH < 30”. Thus, the 
normalized binocular opponent network depicted in fig. 7 provides an 
accurate internal representation of +H in all but the most extreme 
portions of the workspace. 

To explain how opponent computation leads to a representation of 
vergence, note that vergence is equal to the difference between rl 

phi (deg.) 

phi % distortion 

10 

Fig. 9. Percent distortion for c$~ with 0,, = 0”. See text for details on distortion measure. 
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phi (deg. 1 

phi % distortion 

Fig. 10. Percent distortion for I$~ with 0, = 22.5”. See text for details on distortion measure. 

(the outflow command to the medial rectus of the right eye) and I, 
(corresponding to the lateral rectus of the left eye). As in fig. 7, define 
a cell population with activity V’ (for vergence) which receives excita- 
tory inputs I, and rl from cells controlling the medial recti of both 
eyes and inhibitory inputs 1, and r2 from cells controlling the lateral 
recti of both eyes. Then its activity will be governed by 

dV 
- = -zw+ (1 - V)(I, + Q) - (v+ F)(I, + r*). 
dt 

At equilibrium, 

(31) 

V= 
1, + r1 - Fl, - Fr, 

E f r1+ t-2 -I- I, + I, * 
(32) 

phi (deg. ) 

phi % distortion 

Fig. 11. Percent distortion for 4H with BH - - 45”. See ted for details on distortion measure. 



D. Greve et al. / Neural representations for sensory-motor control 135 

Because y1 + r2 = 1 and 1, + 1, = 1, eq. (32) can be rewritten as 

1-F l+F 
V=- E+2 +E+2(5-4). (33) 

This expression suggests a mechanistic explanation of eq. (11, Foley’s 
formal psychophysical function for subjective binocular parallax. Note 
first that if F = 1 and E = 0, then 

V=r, -1,. (34) 

In this case, subjective parallax equalled physical parallax. If, however, 
E > 0 and F < 1, then the slope (1 + F)(E + 2)-l of V versus rl -I, 
is less than one, consistent with Foley’s estimate of B < 1 in (1) from 
the data; and the intercept (1 - F)(E + 21-l of the function is posi- 
tive. A value of F less than 1 is also compatible with Foley’s estimate 
that the psychophysical function has a small positive intercept A, such 
that 0 <A < 2”. 

Computation of a roughly linear internal representation of the 
spherical coordinate R, can also be achieved by shunting competi- 
tion, as shown in fig. 12. Note that the vergence V = rl - 1, is always 
positive, since the horizontal angle of the left eye is always greater 
than the horizontal angle of the right eye when a target is foveated. 
Also, rl - I, reaches a maximum when commands to both medial recti 
are maximal; that is, when the eyes are maximally converged and R, 

theta (deg.) 

R % distortion 

Fig. 12. Percent distortion for R, throughout the workspace. See text for details on distortion 

measure. 
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is minimal. These properties suggest that, if rl - I, is normalized by a 
shunting competitive interaction, then rl - 2, may be transformed into 
an estimate of R, using shunting inhibition rather than excitation. 
The simplest shunting competitive interaction of this type has equilib- 
rium values 

h, = r1 - 4 
G + rl - 1, ’ 

and 

G 
h,= 

G + rl - I, ’ 

(35) 

(36) 

where G is a level of tonic excitation that is inhibited by the vergence 
signal. Because h, is inversely related to vergence, h, can estimate the 
distance R,. In fact, h, is a more linear estimate of R, than the 
approximation R, a l/y for a wide range of E values. The relevance 
of such a transformation was shown in fig. 3c. 

Fig. 12 shows the distortion measure for R, throughout the 
workspace with G = 0.001. The internal representation of R, is 
independent of 4H. As expected from our discussion of fig. 3b, the 
distortion in this case is much larger than that of 8, and +H, ranging 
up to nearly 35% and taking the form of an increasing overestimate of 
the distances of targets with larger horizontal angles I 8, I. A subse- 
quent article will show how better estimates of R,, for purposes of 
reaching a target with an arm, can be discovered through an on-line 
learning process. 

The many uses of a head-centered representation of 3-D target posi- 
tion 

The main result of the present article is that opponent interactions 
can transform naturally occurring eye movement outflow commands 
into a representation of 3-D position whose properties are supported 
by psychophysical evidence. Remarkably, the polar angle (0,) and 
vergence (y) variables arise as sums and differences of suitably pre- 
processed eye movement commands. 
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Such a target representation, by itself, can only be used in situa- 
tions where the eyes are already foveating the target. Subsequent 
articles of this series show however, how the brain can utilize such an 
opponent representation for carrying out a variety of skilled sensory- 
motor actions. For example, in Grossberg et al. (19921, it is shown how 
a suitable defined learning process can combined the component 3-D 
motor representation with binocular visual information to form an 
invariant head-centered representation of both foveated and non- 
foveated 3-D target positions. In Guenther et al. (19921, it is shown 
how an invariant body-centered representation of both foveated and 
non-foveated 3-D target positions can be learned. In Bullock et al. 
(1992b), a s 1 t’ o u ion of the classical motor equivalence problem is 
suggested, whereby many different joint configurations of a redundant 
manipulator can all be used to realize a desired trajectory in 3-D 
space. In particular, using the opponent model as a foundation, this 
control system learns a mapping from motion directions in 3-D space 
to velocity commands in joint space. Computer simulations of the 
model have demonstrated that, without any additional learning, the 
network can generate accurate movement commands that compensate 
for variable tool lengths, clamping of joints, distortions of visual input 
by a prism, and unexpected limb perturbations. Blind reaches have 
also been simulated. Thus the opponent model described herein, 
albeit simple, seems to form a key module in several neural systems 
that are capable of controlling complex sensory-motor skills. 
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