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Abstract--A neural network model is described for how an invariant head-centered representation of  3-D target 
position can be ataonomously learned by the brain in real time. Once learned, such a target representation may be 
used to control both eye and limb movements. Tile target representation is derived from the positions of  both eyes 
in the head. and the locations which the target activates on the retinas of  both eyes. A Vector Associative Map (VAM) 
learns the many-to-one transformation from multiple combinations of  eye-and-retinal position to invariant 3-D target 
position. Eye position is derived from outflow movement signals to the t:l'e muscles. Two successive stages o f  opponent 
processing convert these corollary discharges into a head-centered representation that closely approximates the 
azimuth, elevation, and vergence o f  the eyes' gaze position with respect to a cyclopean origin located between the 
eyes. I.f4M learning combines this cyclopean representation of  present gaze position with binocular retinal information 
about target position into an invariant representation of  3-D target position with respect to the head. VAM learning 
can use a teaching vector that is externally derived from the positions o f  the eyes when they foveate the target. A 
VAM can also autonomously discover and learn the invariant representation, without an explicit teacher, by generating 
internal error signals from enviromnental fluctuations in which these invariant properties are implicit. VAM error 
signals are computed b), Difference Vectors ( DVs) that are zeroed by the VAM learning process. VAMs may be 
organized into I,'AM Cascades lbr learning and performing both sensory-to-spatial maps and spatial-to-motor maps. 
These multiple uses clarif|' why D V-type properties art, computed by cells in the parietal, frontal, and motor cortices 
of  many mammals. I,'AMs are modulated by gating signals that express different aspects o f  the will-to-act. These 
signals transform a single invariant representation into movements o f  d~fferent speed (GO signal) and size ( GRO 
signal), and thereby enable I ~ M  controllers to match a plamwd action sequence to variable environmental conditions. 

Keywords--Neural networks, Sensory-motor control, Spatial representation, Learning, Vector associative map, 
Gaze, Motor plan. 

1. SPATIAL  R E P R E S E N T A T I O N S  FOR 
T H E  N E U R A L  C O N T R O L  O F  

FLEXIBLE M O V E M E N T S  

This paper introduces a neural network model o f  how 
the brain learns spatial representations with which to 
control sensory-guided and memory-guided eye and 
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limb movements.  These spatial representations are ex- 
pressed in both head-centered coordinates and body- 
centered coordinates since the eyes move within the 
head, whereas the head, arms, and legs move with re- 
spect to the body. This paper describes a model for 
learning an invariant head-centered representation of  
3-D target position. A model for learning an invariant 
body-centered representation of  3-D target position will 
be described elsewhere (Guenther,  Bullock, Greve, & 
Grossberg, 1992). 

The flexible spatial relationships o f  the eyes, head, 
body, and limbs with respect to one another enable 
humans  and other mammals  to carry out a remarkable 
range of  skilled behaviors. Understanding how flexible 
control of  multilink movement  systems is achieved 
during au tonomous  behavior in real time is one of  the 
most challenging problems in the field of  computational 
neuroscience. Since eye, head, body, and limb segments 
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are not rigidly attached to each other, an object with a 
fixed location relative to one segment can vary widely 
in its location relative to other segments. In particular, 
the sensory systems, such as eyes and ears, typically 
ride on body segments different than those used to ap- 
proach or reach for an object in space. This paper an- 
alyzes the formation and structure of spatial represen- 
tations whereby humans and other mammals  can skill- 
fully act upon objects in 3-D space despite the variable 
relative location of sensing and acting segments. 

Two examples may be cited to dramatize the central 
issues. A human can feel an insect crawling up his or 
her leg while standing or sitting, and can reach accu- 
rately without vision to brush away the insect. The leg 
skin is a sensory surface that assumes different positions 
relative to the shoulder joint when we move from a 
sitting to a standing posture. Because the shoulder joint 
is the origin for the reaching limb, different arm-joint 
angles are required to reach to the same insect location 
on the thigh while sitting than while standing. This 
defines a cutaneo-motor coordination problem. 

Similarly, the eyes are segments containing sensory 
surfaces that move relative to the head, and the head 
is a segment that moves relative to the body. As the 
eyes move in the head and the head moves in a sta- 
tionary body, the visual representation of a stationary 
object on the retinas keeps changing, yet the location 
of the object with respect to the body remains fixed. 
Likewise, if the eyes fixate an object while the body 
stance is altered, the visual representation of the object 
may remain unchanged, yet the location of the object 
with respect to the body changes. Here, different arm- 
joint angles will be needed to reach an object that is 
located identically relative to the sensory surfaces by 
which the object is detected. This defines a visuo-motor 
coordination problem. 

In both of these examples, the information available 
at the sensory surfaces, whether skin or retina, is in- 
sufficient to control accurate sensory-motor coordi- 
nation across the interposed segments. Additional in- 
formation is needed to resolve the ambiguity inherent 
in the one-to-many map between position of a sensory 
surface and position of a moving limb. 

Gibson (1966) has noted that some types of infor- 
mation are inherently superior to others. Information 
that is naturally generated within the perception-action 
cycle, and that is capable of acting directly to guide 
action, is inherently more useful in real-time control 
than information in the form of"symbol ic  rules," "as- 
sumptions," or "memory  images," all of which can be 
applied to an ongoing sensory-motor control task only 
by indirect means. Such indirection often requires more 
processing steps and therefore more processing time, 
as well as access to types of information that are not 
available to an animal behaving under uncertain en- 
vironmental conditions in real time. Schemes that use 
externally controlled switching between learning and 

performance episodes, or control event durations to 
prevent learning instabilities, are also insufficient to 
model the behavior of freely moving animals or auton- 
omous robots. The neural networks proposed herein 
rely only on information that is available during an 
ongoing perception-action cycle. We show how infor- 
mation of several different types may be rapidly com- 
bined by an appropriately defined unsupervised learn- 
ing system whose properties help to clarify a variety of 
psychophysical and neurobiological data about move- 
ment control. 

Three general design themes underly many of our 
results. One theme explores the need for spatial rep- 
resen ta t ions-as  distinct from perceptual, cognitive, or 
motor representations--in the control of goal-oriented 
behaviors. In this regard, it is well-known that visual 
inputs activate a "what"  processing stream as well as 
a "where" processing stream within the brain (Goodale 
& Milner, 1992). The "what"  processing stream leads 
to recognition of external objects and includes brain 
regions such as visual cortex and inferotemporal cortex. 
The "where" processing stream leads to spatial local- 
ization of objects and includes brain regions such as 
superior colliculus and parietal cortex. "Where"  pro- 
cessing is illustrated by the following competence. 
Imagine that your right hand is moved by an external 
force to a new position in the dark. Thus, neither visual 
cues nor self-controlled outflow movement commands 
are available to encode the right hand's new position. 
Despite the absence of vision and self-controlled voli- 
tion, it is easy to move your left hand to touch your 
right hand in its new location. The motor  coordinates 
which represent the position of your right hand are 
different from the motor coordinates that your left arm 
realizes in order to touch it. Some representation needs 
to exist that mediates between the different motor co- 
ordinates of the two arms. This mediating scheme is 
the spatial representation. 

This example illustrates that different motor  plans, 
whether for the control of one arm or two, are often 
used to reach a prescribed position in space. The prob- 
lem of how animals can reach a fixed target in multiple 
ways is often called the "problem of motor  equiva- 
lence." A properly defined spatial representation is a 
prerequisite to discovering a biologically relevant so- 
lution of the motor equivalence problem. The model 
introduced herein forms part of a proposed solution to 
the motor equivalence problem (Bullock, Grossberg, 
& Guenther, 1992). In this regard, our research pro- 
gram has sought to characterize spatial representations 
that can be embedded in a larger neural system capable 
of autonomously learning to perform skilled arm 
movement sequences, such as handwriting and visually- 
guided object manipulation, at any reachable positions 
and size scales with respect to the body. Such a spatial 
representation should enable planned action sequences 
to be performed with a tool of variable length and mass, 
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such as a pen or hook, either in response to visual guid- 
ance or from memory. We also require that the ability 
to perform an action starting with a different initial 
position, size scale, or tool can be achieved without 
having to learn each of these variations as a different 
motor plan. Rather, these different trajectories should 
emerge as natural invariants of  the interaction between 
spatial and motor  representations, modulated by state- 
dependent parameter changes such as "acts of will," 
and by appropriate sensory feedback. Thus, we seek to 
define an action-oriented spatial representation that has 
evolved for the control of skilled motor  behavior. 

The spatial representations to which we have been 
led are built up from the same types of computations 
that are used to control motor  commands. This obser- 
vation leads to a second general design theme of our 
work. We inquire into the natural form of neural com- 
putations that are appropriate for representation and 
control of a bilaterally symmetric body. Bilateral sym- 
metry leads to the use of competitive and cooperative 
interactions among bilaterally symmetric body seg- 
ments. These include opponent interactions between 
pairs of antagonistic neurons that measure one or an- 
other type of spatial or motor  offset with respect to an 
axis of symmetry. Such an opponent model of 3-D tar- 
get position was introduced in Bullock, Greve, Gross- 
berg, and Guenther (1992) and developed in Greve, 
Grossberg, Guenther, and Bullock ( 1992 ). It describes 
a head-centered spatial representation of 3-D targets 
that are foveated by both eyes. This model is used herein 
as part of  the present model, which learns how to com- 
bine visual and motor  information to generate an in- 
variant head-centered spatial representation for both 
foveated and nonfoveated 3-D target positions. A head- 
centered spatial representation of nonfoveated targets 
is needed both to look at new targets with the eyes and 
to reach towards these targets with the limbs. 

What type of learning is appropriate to generate such 
a spatial representation? An answer to this question is 
described below as part of the third design theme of 
our work, which asks, more generally, how to define 
action-oriented spatial representations. In particular, 
what type of learning gives rise to spatial representations 
that are computationally consistent with the motor tra- 
jectory generators that they control? Such consistency 
cannot be taken for granted in a self-organizing system 
whose behavioral properties emerge from distributed 
interactions among many system components. Re- 
markably, spatial representations and trajectory gen- 
erators seem to use the same type of circuit module, 
and thus, the same type of learning law. The fact that 
networks for representing space can use the same type 
of neural circuit, called a Vector Associative Map 
(VAM), as networks for the control of variable-speed 
synchronous control of  a muitijoint limb was first 
demonstrated by Gaudiano and Grossberg ( 1991 ). In 
this work, it was shown how a 1-D space could self- 

organize and learn to control synchronous variable- 
speed trajectories of a two-joint arm. This paper begins 
to show how a 3-D space can self-organize and learn 
to control synchronous variable-speed and variable-size 
trajectories of a four-joint arm, with or without a tool 
of variable length (see Bullock, Grossberg, & Guenther, 
1992). 

The next section surveys key geometrical and psy- 
chophysical considerations pertinent to the model. For 
comple~teness, Sections 2 and 3 describe how two suc- 
cessive stages of opponent interactions can generate the 
type of head-centered representation that is suggested 
by psychophysical and neurobiological data. Sections 
4-14 describe relevant properties of VAMs. Section 15 
begins specification of a neural network model for 
learning invariant head-centered visuomotor target po- 
sitions. Six versions of this model will be described to 
highlight invariant model properties while also ac- 
knowledging the existence of variations on a theme. 

2. GEOMETRY OF O B J E C T  LOCALIZATION 

During eye-hand coordination, both eyes typically fix- 
ate a target before or while a hand reaches towards it. 
Vision, in particular the binocular disparity of an ob- 
ject's image on the retinas of both eyes, provides im- 
portant cues to the relative 3-D position of an object 
with respect to the head. Such visual information is, 
however, often insufficient for accurate reaching towards 
a binocularly fixed target. One reason for this limitation 
is that binocular disparity, alone, does not provide un- 
ambiguous information about absolute distance. For 
example, if each eye fixates the interior of a homoge- 
neous object at a different location, then the two mon- 
ocular images of the object's interior can be binocularly 
fused. However, the binocular disparities of the object's 
boundaries will change with every change in the fixation 
points of the two eyes. These binocular disparity 
changes occur without a change in the object's distance 
from the observer. Thus binocular disparity is not a 
reliable cue to absolute distance in any situation of this 
type. 

Another limitation of binocular disparity cues arises 
whenever the object is a target that both eyes binocularly 
fixate. When both eyes fixate the same location in space, 
then the binocular disparity of this location on the ret- 
inas equals zero, no matter how near or far the object 
may be from the observer. Thus, small fixated objects 
cannot accurately be reached using only information 
about binocular disparity. Since our primary goal in 
this paper is to analyze how reaching towards fixated 
objects is controlled, we need to consider other sources 
of information than retinal, or visual, information. 

The bilaterally symmetric organization of the body 
provides another, nonvisual source of information for 
computing absolute distance of a fixated target from 
an observer's head and body. When both eyes binoc- 
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ularly fixate a target, the point of intersection of the 
lines of gaze may be used to compute the absolute dis- 
tance and direction of the fixation point with respect 
to the head. Such extraretinal information may also be 
used to complement visual processing to derive better 
estimates of the absolute distance and direction of vi- 
sually detected but nonfixated objects. 

The intersection point of the lines of gaze moves 
with the mobile eyes within a roughly conical 3-D vol- 
ume that opens out in front of the head with apex be- 
tween the eyes and horizontal and vertical bounds de- 
termined by the limits of ocular rotation. Clues to the 
nature of this 3-D coordinate system can be found in 
the experimental literature on the role of extraretinal 
information in visual object localization (Blank, 1978: 
Foley, 1980; Hollerbach, Moore, & Atkeson, 1986; 
Soechting & Flanders, 1989). This evidence is reviewed 
in Greve et al. (1992). A self-contained formal de- 
scription of such a neurally generated 3-D coordinate 
system is described herein. 

Figure la shows how the intersection point of the 
lines of sight of the two eyes converge toward the nose 
as the two eyes rotate to foveate increasingly close ob- 
jects that are straight ahead. The rotation centers of 
the two eyes together with the fixated point on the object 
form a triangle. The angles of the two eyes in their 
orbits thus jointly specify the angle 3' between the lines 
of sight that intersect at the fixation point, which is 
called the binocular parallax( Foley, 1980). This tri- 
angular structure also allows an internal measure of 
net ocular vergence--the extent to which the eyes are 
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FIGURE 1. The geometry of 3-D target of localization by the 
two eyes: Symbols L and R are the centers of the left and right 
eyes: (a)  Left side shows how a closer target generates a 
larger vergence angle. Right side shows how the vergence 
angle is calculated from the angles of the eyes in their orbits. 
(b)  shows the vergence as a function of target radius for a 
target on the sagittal plane. 
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FIGURE 2. Illustration of relationships between spherical co- 
ordinates RH, SH, 0M, and Cartesian coordinates x, y, z. Both 
coordinate systems have origins centered between the eyes. 
The x-z plane origin is the midpoint of a y-axis segment drawn 
between the ocular centers of rotation, and the z-axis is parallel 
to the gravity vector during upright posture. Thus, the x-axis 
always points "straight ahead." Radius RH is measured from 
the origin to the binocular fixation point on the object. Elevation 
SH is the angle between the radius and a line in the x-y plane. 
This line connects the origin to the point where a ray from the 
fixation point is normal to the x-y plane. Azimuth 0~ is defined 
similarly, but with respect to the x-z plane. 

rotated towards the nose-- to  serve as one coordinate 
for estimating the distance from egocenter to a binoc- 
ularly foveated object. The angle 3' will henceforth be 
used as a measure of vergence. The two other coordi- 
nates in this 3-D representation are also derived from 
estimates of the position of both eyes in their orbits. 
Figure l b shows the relation between 3' and the radial 
distance of a target from the radial egocenter that is 
defined in Figure 2. Figure 2 describes the geometry of 
3-D target localization in terms of spherical coordinates. 
The origin of this coordinate system, called the cranial 
egocenter, lies at the midpoint between the two eyes. 
Thus, the representation is "cyclopean." The head- 
centered horizontal angle or azimuth, OH, and the ver- 
tical angle or elevation, SH, measure deviations from 
straight-ahead gaze. The radial distance Rn is replaced 
by the vergence, as in Figure lb. Figure 3 describes the 
geometry of the cyclopean angle On with respect to the 
angles OL and OR subtended by the left eye and right 
eye, respectively. 

3. O P P O N E N T  INTERACTIONS FOR 
REPRESENTATION OF FOVEATED 

3-D TARGET POSITIONS 

We now summarize how to binocularly combine out- 
flow signals from the tonically active cells that control 
the position of each eye (Figure 4) to form a head- 
centered representation of a foveated target. This can 
be done in two stages of opponent processing. First, 
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FIGURE 3. Geometry of cyclopean position: The angles 0t and 
0. that the left eye and right eye assume to foveate a target 
correspond to a cyclopean, heed-centered angle 0,. 

opponent interactions combine the outputs of the cells 
that control the agonist and antagonist muscles of each 
eye (Figure 5 ). These opponent interactions give rise 
to opponent pairs of cells the sum of whose activity is 
approximately constant, or normalized. Next, the nor- 
malized outputs from both eyes are combined in two 
different ways to generate a head-centered spatial rep- 
resentation of the binocular fixation point. In particular, 
opponent cells from each eye generate inputs of opposite 
sign (excitatory and inhibitory) to their target cells at 
the next processing stage. As illustrated in Figure 5, 
one combination gives rise to a cell population whose 
activity h2 approximates the angular spherical coordi- 
nate 0H. The other combination gives rise to a cell pop- 
ulation whose activity F approximates the binocular 
vergence % which in turn can be used to estimate the 
radial distance R , .  The two combinations generate 
head-centered coordinates by computing a sum and a 
difference of the normalized opponent inputs from both 
eyes. Such a general strategy for combining signals is 
well-known in other neural systems, such as color vi- 
sion. For example, a sum L + M of signals from two 
color vision channels estimates luminance, whereas a 
difference L - M estimates color (DeValois & DeValois, 

FIGURE 4. Control of the extraocular muscles: The muscles 
are arranged in agonist-antagonist pairs. Stimulation by neuron 
L= causes a contraction of the left medial muscle, which rotates 
the left eyeball to the right. 

FIGURE 5. Opponent processing architecture for the calculation 
of the internal representation of gaze angle (h=) and vergence 
( r ) .  Signals L1, L=, R1, and R= are corollary discharges from 
the outflow movement cells that control eye position as in Figure 
4. The activity of each pair of cells is normalized at cells I1, I=, 
r~, and r=. 

1975; Mollon & Sharpe, 1983 ). Thus, the computations 
that may be used to control reaching in 3-D space seem 
to derive from a broadly used principle of neural com- 
putation. 

The neural mechanism for normalizing the total ac- 
tivity of opponent cells uses a shunting on-center off- 
surround network (Grossberg, 1982); that is, an op- 
ponent interaction wherein the target cells obey a 
membrane equation (Hodgkin, 1964; Katz, 1966). In 
particular, suppose that the agonist and antagonist cells 
that control the horizontal position of the left eye have 
activities L~ and L2, respectively. Let the normalized 
opponent cells in the shunting network have activities 
/L and/2. Suppose that 

and 

d 
I, = - A l l  + ( I  - II)LI - ItL2 (1)  

d 
dt 12 = -AI,_ + ( 1 - 12)L2 - 12 L , .  (2) 

By eqn ( 1 ), activity Lj excites l~, whereas activity L_, 
inhibits l~. The opposite is true in eqn (2).  Parameter 
A is the decay rate. At equilibrium, ( d / d t ) l ~  

= (d /d t )12  = 0, so eqns ( 1 ) and (2) imply that 

and 

Li /j (3) 
A + Lj  + L2 

L2 
/2 ( 4 )  

A + Lt + L2" 
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Adding eqns (3) and (4) shows that 

LI + L2 
it +/2 - (5) 

.4 + Lj + L2 " 

Thus, ifA ,~ L~ + L2, 

/, + / 2 ~  1. (6) 

The approximation (6) will be used below for all nor- 
malized pairs of opponent cells. In particular, we as- 
sume that the activities of opponent cell populations 
that control agonist-antagonist muscle pairs are nor- 
malized so that the total activity of  each cellular pair 
is fixed at unity. This ensures that increasing the activity 
of the agonist control cell results in a corresponding 
decrease in the activity of its antagonist control cell. 
Figure 5 shows the two cellular pairs needed to control 
0e and On. These pairs are labeled by the variables/~, 
/2 and rt, r2, which measure corresponding cellular ac- 
tivities. Thus, the following equations define the internal 
representations of the horizontal angle of each eye: 

1~ +/2 = 1 (7) 

01. = -90 ° + 180 ° x/2 (8) 

r, + r2 = 1 (9) 

0e = -90 ° + 180 ° × r2 ( 1 0 )  

where li indicates the activity of left eye cell population 
i and r~ indicates the activity of right eye cell popula- 
tion i. 

Internal representations for the vertical angles of left 
and right eyes may be defined similarly. Thus, 

1 3 + / 4  = 1 ( 1 1 )  

q%. = - 9 0  ° + 180 ° x /4 ( 1 2 )  

r3+r4 = 1 (13) 

~bn = -90  ° + 180 ° × r4. (14) 

To provide a head-centered representation of fov- 
eated 3-D target positions, the outflow signals lt, 12, %, 
and/4 are binocularly combined. Let the cell popula- 
tions hz, i = 1, 2 . . . . .  6, form the basis for this head- 
centered spatial representation. These populations are 
also arranged in antagonistic pairs. First we define cell 
activities h~, ha, h3, and h4 that linearly approximate 
the following estimates of On and 4)n: 

11t + 112 = 1 ( 1 5 )  

OH = - -90  ° + 180 ° X 112 ( 1 6 )  

113+114 = 1 ( 1 7 )  

4~, = -90 ° + 180 ° × ]14. ( 18 ) 

These head-centered binocular representations of On 
and q~H emerge by simply averaging the corresponding 
monocular components derived from the left and right 
eye muscle command corollary discharges using a 

shunting on-center off-surround network. Figure 5 
shows the connectivity of a network for the cell activity 
h2 which represents On. In particular, 

d 
- - h ,  = -Bh2 + ( 1 - h 2 ) ( 1 2 + r z ) - h , _ ( I t + r l ) ,  (19) 
dt " 

where B is the decay rate. Solving this equation at equi- 
librium ( d h 2 / d t  = 0) yields 

/2+ r2 
/1., = ( 20 ) 

B + I~ + rj +12 +1",_" 

Since/ ,  + 12 ~ 1 and r, + r2 ~ 1, choosing a small 
decay parameter B leads to the approximation 

Likewise, 

1~ "}- I" 2 
h2 ~ - ( 2 1 )  

2 

11 + i "  1 
i l l  ~ ( 2 2 )  

2 

so that. by eqns (21) and (22).  

tl, + h2 ~ 1. (23) 

To evaluate the adequacy of this internal represen- 
tation of 0 . .  a distortion measure was calculated in 
Greve et al. (1992) by dividing the change in the in- 
ternally represented angle of  two successively foveated 
points by the actual change in angle of the successively 
foveated points for small changes throughout the work- 
space. The distortion measure was calculated for a 
workspace defined by - 4 5  ° < 0 .  < 45 °. - 4 5  ° < 4~H 
< 45 °, and 3 inches < Rn < 30 inches (7.6 cm < RH 
< 76 cm). This workspace was chosen to approximate 
the cone within which both binocular foveation and 
reaching to a target are possible in humans. The dis- 
tortion in this range is less than 15%, with essentially 
0% distortion for Rn > 5 inches. Thus, the opponent 
network defined above provides an accurate mechanism 
for computing an internal representation of 0 , .  Like- 
wise, the distortion measure for 4)n showed that the 
normalized binocular opponent network provides an 
accurate internal representation of 4~u in all but the 
most extreme portions of the workspace. 

To review how opponent computation leads to a 
representation of vergence, note that vergence is equal 
to the difference between r~ (the outflow command to 
the medial rectus of the right eye) and It (corresponding 
to the lateral rectus of  the left eye). As in Figure 5, 
define a cell population with activity I '  (for internal 
representation of vergence 3' ) which receives excitatory 
inputs/2 and rt from cells controlling the medial recti 
of both eyes and inhibitory inputs/1 and r2 from cells 
controlling the lateral recti of both eyes. Then its activity 
will be governed by  

dF 
- C F + ( 1 - F ) ( r ~ + I 2 ) - ( F + D ) ( I ~ + r 2 ) .  (24) 

dt 



Neural Representations for Sensory-Motor Control. II 49 

At equilibrium, 

r l  - -  12 - -  D I I  - D r 2  
r = (25) 

C + r t  + r 2 + / t  +/2" 

Because r~ + r2 = 1 and/~ + /2 = 1, eqn (25) can be 
rewritten as 

I - D  I + D  
F - + -~-7-~. ~ (r~ - /~) .  (26) 

C +  2 ~ _ t z  

I f D  = 1 and C = 0, then 

P = rj - I i .  ( 2 7 )  

In this case, subjective parallax equaled physical par- 
allax. If, however, C > 0 and D < 1, then the slope 
(1 + D)(C + 2) -1 o f f  versus rt - / t  is less than one, 
and the intercept ( 1 - D)(C + 2) -I of the function is 
positive. Such values are compatible with the Foley 
(1980) estimate from psychophysical data of  the inter- 
nal representation of P. See Greve et al. (1992) for 
further discussion of psychophysical data that are con- 
sistent with this representation. 

4. CONVERTING M O T O R  
REPRESENTATIONS OF FOVEATED 

TARGET P O S I T I O N S  INTO V I S U O M O T O R  
REPRESENTATIONS OF NON-FOVEATED 

TARGET P O S I T I O N S  

This section summarizes computational issues that help 
to motivate the model. The central question is: How 
can a motor representation of foveated target positions 
be used to learn a visuomotor representation of both 
foveated and nonfoveated target positions? In order to 
answer this question, the following ingredients are 
needed: a motor  representation of where the two eyes 
are looking; a retinal visual representation of a non- 
foveated target in 3-D space: a head-centered represen- 
tation of target position in 3-D space; and a learning 
law that can combine the first two types of information 
so that they can jointly predict the third. 

The next section discusses the learning module. After 
that, an analysis of how the three types of information 
are computed and combined during real-time learning 
conditions will be considered. Of  particular importance 
is the issue of how an invariant head-centered repre- 
sentation of 3-D space can be self-organized even 
though no part of the system is endowed with such a 
head-centered representation before learning occurs. 
The core problem is that many combinations of eye 
position and retinal target position correspond to one 
head-centered target position. What sort of  teaching 
signal can sort out this many-to-one relationship to 
discover the correct head-centered invariant represen- 
tation? 

5. VECTOR ASSOCIATIVE MAPS: 
A UNIFIED FORMAT FOR LEARNING 

SPATIAL AND M O T O R  REPRESENTATIONS 

The same type of module, used at different processing 
stages, is capable of learning parameters for the trajec- 
tory controllers of multijoint limb movements and the 
spatial representations that activate the trajectory con- 
trollers. Thus, replication of a common design at dif- 
ferent stages of brain processing can learn both spatial 
and motor transformations. The existence of such a 
module, called a VAM (Gaudiano & Grossberg, 1991, 
1992 ), clarifies how spatial representations can interact 
in a computationally consistent way with motor tra- 
jectory controllers. The main concepts needed to mo- 
tivate our development of VAM systems are provided 
below. 

VAM dynamics clarify how a child learns to reach 
for objects that it sees. This problem requires under- 
standing the interactions between two distinct modal- 
ities: vision (seeing an object) and motor control 
(moving a limb). In particular, how does an individual 
stably learn transformations within and between the 
two different modalities that are capable of controlling 
accurate goal-oriented movements? The behavioral 
events that enable such learning to occur were called a 
circular reaction by the Swiss psychologist Jean Piaget 
(1963). 

The circular reaction is an autonomously controlled 
behavioral cycle with two components: production and 
pelveption, with learning linking the two modalities to 
enable sensory-guided action to occur. Such a circular 
reaction is intermodal; that is, it consists of the coupling 
of two systems operating in different modalities. In or- 
der for the intermodal circular reaction to generate sta- 
ble learning of the parameters that couple the two sys- 
tems, the control parameters within each system must 
already be capable of accurate performance. Otherwise, 
performance may not be consistent across trials and a 
stable mapping could not be learned between different 
modalities. Thus, it is necessary to self-organize the 
correct intramodal control parameters before a stable 
intermodal mapping can be learned. 

Grossberg and Kuperstein (1986, 1989) modeled 
how such intramodal control parameters can be learned 
within the eye movement system. During early devel- 
opment, eye movements are made reactively in response 
to visual inputs. When these eye movements do not 
lead to foveation of the visual target, the nonfoveated 
position of the target generates a visual error signal. 
The Grossberg-Kuperstein model suggests how such 
error signals can be used by the cerebellum to learn 
eye movement control parameters that lead to accurate 
foveations. 

The VAM model clarifies how the arm movement 
system can endogenously generate movements during 
a "motor  babbling" phase. "Motor babbling" describes 
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the spontaneous arm movements of an infant during 
an early developmental phase. As explained below, these 
movements help to generate the data needed to learn 
correct arm movement control parameters. For ex- 
ample, they activate target position representations that 
are used to learn a visuomotor transformation that 
controls visually guided reaching. The simplest example 
of a VAM is a model called the Adaptive Vector Inte- 
gration To Endpoint (AVITE) model (Figure 6) for 
variable-speed adaptive control of multijoint limb tra- 
jectories. The AVITE model is, in turn, a self-organizing 
version of the Vector Integration To Endpoint (VITE) 
model of Bullock and Grossberg (1988a) for variable- 
speed control of multi-joint trajectories. 

6. TRAJECTORY PROPERTIES AS 
EMERGENT INVARIANTS 

Bullock and Grossberg (1988a) suggested that arm 
movement trajectory properties emerge through inter- 
actions among two broad types of control mechanisms: 
planned control and automatic control. Planned control 
variables include target position, or where we want to 
move; and speed of movement, or how fast we want to 
move to the desired position, and the "will" to move 
at all. Automatic control variables compensate for the 
present position of the arm, unexpected inertial forces 
and external loads, and changes in the physiognomy of 
the motor plant, say, due to growth, injury, exercise, 
and aging. 

The VITE model of Bullock and Grossberg imple- 
ments part of such a strategy of trajectory control and 
has been used to explain a large behavioral and neu- 

+,[ TPC 

DV I 
+ , 

l- T; Go 
P P C  

FIGURE 6. A schematic diagram of the Adaptive VITE (AVITE) 
circuit. The Now Print (NP) gate copies the PPC into the TPC 
when the arm is stationary, and the adaptive synapses (semi- 
circles in the TPC --~ DV pathways) learn to transform target 
commands into correctly calibrated outflow signals at the PPC. 
(Reprinted with permission from Gaudiano & Grossberg, 1991.) 
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To Arm To Arm 

F I G U R E  7 .  T h e  V I T E  model, adapted from Bullock and Gross- 
berg (1988a). T P C  = Target Position Command, DV = Differ- 
ence Vector, PPC = Present Position Command. The GO signal 
acts as a nonspecific multiplicative gate that can control the 
overall speed of a movement, or the will to move at all. Use of 
a single GO signal insures synchronous activation of all muscles 
in the synergies involved in a coordinated movement. 

robiological data base (see Bullock & Grossberg, 1988a, 
1988b, 1989, 1991). The model clarifies how motor 
synergies can be dynamically bound and unbound in 
real-time, and how multiple joints within a synergy can 
be synchronously moved at variable speeds. The syn- 
chrony with which different muscles of a synergy con- 
tract by different amounts in equal time emerges from 
the interactive dynamics of the network, as do many 
other trajectory properties, such as empirically observed 
velocity profiles; they are not externally controlled or 
programmed into the network. 

7. T H E  VITE M O D E L  

Figure 7 summarizes the main components of the VITE 
circuit. At the top of the figure, inputs to the Target 
Position Command (TPC) populations, represent the 
desired final position of the arm. At the bottom of the 
figure, the Present Position Command (PPC) popula- 
tions code an internal representation of where the arm 
actually is. Outflow movement commands to the arm 
are generated by the PPC. These outflow signals, sup- 
plemented by spinal circuitry and cerebellar learning 
(Bullock & Contreras-Vidal, 1992; Bullock, Contreras- 
Vidal, & Grossberg, 1992; Bullock & Grossberg, 1989, 
1991) move the hand to the location relative to the 
body that is coded by the PPC. 

Signals from the TPC and the PPC enable the Dif- 
ference Vector ( DV ) populations to continuously com- 
pute the discrepancy between present position (PPC) 
and desired position (TPC). DV activation is integrated 
by the PPC until the latter becomes equal to the TPC, 
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at which time the DV will be equal to zero and PPC 
integration stops. Hence, the VITE circuit embodies 
an automatic process that moves the PPC continuously 
to the TPC. The AVITE model summarized herein ex- 
plains how "motor  babbling" endogenously generates 
PPC representations that move the arm through a full 
range of positions, and activate TPCs whose signals to 
the DV are adaptively tuned to be dimensionally con- 
sistent with the corresponding PPCs by using the DVs 
as source of error signals during learning. 

8. CODING M O V E M E N T  SPEED AND 
INTENTIONALITY:  T H E  GO SIGNAL 

If the PPC were always allowed to integrate the DV, 
then a movement would begin as soon as the TPC be- 
comes active. Somehow it must be possible to "pr ime" 
a target position without moving the arm until another 
signal indicates the intent to carry out the movement. 
A related issue concerns how the overall speed of a 
movement can be varied without changing the desired 
TPC. "'Priming" denotes the limiting case of zero speed. 

Trajectory-preserving speed control can be achieved 
by multiplying the output of the DV with a nonspecific 
gating signal. This is the GO signal depicted in Figure 
7. Because of its location within the VITE model, the 
GO signal affects the rate at which the PPC is contin- 
uously moved toward the TPC, without altering the 
resulting trajectory. 

For example, as long as the GO signal is zero, in- 
statement of a TPC generates a nonzero DV, but the 
PPC remains unaltered. This "primed" DV codes the 
difference between the arm's present position and de- 
sired position. When the GO signal is nonzero, the DV 
is integrated by the PPC at a rate proportional to the 
product (D V ) .  (GO) .  Integration ceases when the PPC 
equals the TPC and the DV equals zero, even if the 
GO signal remains positive. Other things being equal, 
a larger GO signal causes the PPC to integrate at a 
faster rate so the same target is reached in a shorter 
time. 

The synchrony of synergetic movement control by 
a VITE circuit is preserved in response to an arbitrary 
GO signal, and the main qualitative properties of VITE- 
controlled velocity profiles are preserved in response 
to a wide class of increasing GO signals (Bullock & 
Grossberg, 1988a). The model's prediction of a reversal 
in the direction of velocity profile asymmetry with in- 
creasing speed was confirmed in an explicit test by Na- 
gasaki (1989), and its prediction of a late-acting exe- 
cution-gating signal was confirmed in an explicit test 
by DeJong, Coles, Logan, and Gratton (1990). 

9. AUTONOMOUS LEARNING OF VITE 
COORDINATES 

In order for the VITE model to generate correct arm 
trajectories, the TPC and PPC must be able to activate 

dimensionally consistent signals T P C  --~ D V  and 
P P C  --~ D V for comparison at the DV. There is no 
reason to assume that the gains, or even the coordinates, 
of these signals are initially correctly matched. Learning 
of an adaptive coordinate transformation is needed to 
achieve self-consistent matching of TPC- and PPC- 
generated signals at the DV. 

In order to learn such a transformation, TPCs and 
PPCs that represent the same target positions must si- 
multaneously be activated. This cannot be accom- 
plished by activating a TPC and then letting the VITE 
circuit generate a corresponding PPC. Such a scheme 
would beg the problem being posed; namely, to discover 
how excitatory T P C  --~ D V and inhibitory P P C  ---* D V 

signals are so calibrated that DV stage outputs can gen- 
erate the corresponding PPC. An analysis of all the 
possibilities that are consistent with VITE constraints 
suggests that PPCs may initially be generated by an 
internal, or endogenous, activation source during a 
motor babbling phase. This source is called the En- 
dogenous Random Generator ( ERG ) ( Figure 8 ). After 
such a babbled PPC is generated and a corresponding 
action taken, the PPC is itself used to directly instate 
a TPC that represents the same target position. This 
occurs via a one-to-one mapping along pathway 
P P C  --~ N P  --~ T P C  in Figures 6 and 8b (NP = Now 
Print gate, described below). Thus, motor babbling 
samples the work space and, in so doing, generates a 
representative set of pairs (TPC, PPC) for learning the 
VITE coordinate transformation. Such learning enables 
endogenously generated movements to be supplanted 
by planned movements. 

10. ASSOCIATIVE LEARNING FROM 
PARIETAL CORTEX TO MOTOR CORTEX 

DURING MOTOR BABBLING 

Further analysis suggests that the site where an adaptive 
coordinate change can take place is at the synaptic 
junctions that connect the TPC to the DV. These junc- 
tions are represented as semicircular synapses in Figure 
6. From this perspective, the DV represents an internal 
measure of error in the sense that miscalibrated signals 
T P C  ~ D V and P P C  --~ D V from TPCs and PPCs 
that correspond to the same target position will generate 
a nonzero DV. Learning is designed to change the syn- 
aptic weights in the pathways T P C  --~ D V in a way that 
drives the DV to zero. After learning is complete, the 
DV can only equal zero if the TPC and PPC represent 
the same target position. If we accept the neural inter- 
pretation of the TPC as being computed in the parietal 
cortex (Anderson, Essick, & Siegel, 1985; Grossberg & 
Kuperstein, 1986, 1989) and the DV as being computed 
in the motor cortex (Bullock & Grossberg, 1988a; 
Georgopoulos, Kalaska, Caminiti, & Massey, 1982; 
Georgopoulos, Kalaska, Crutcher, Caminiti, & Massey, 
i 984; Georgopoulos, Schwartz, & Kettner, 1986 ), then 
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FIGURE 8. A diagrammatic illustration of a single babbling cycle in the AVITE. (a) The Endogenous Random Generator ON channel 
output (ERG ON) is integrated at the PPC, giving rise to random outflow signals that move the arm. (b) When the arm stops moving 
at ERG ON offset, a complementary ERG OFF signal opens the Now Print (NP) gate, copying the current PPC into the TPC through 
an arbitrary transformation. (c) The filtered TPC activation is compared to the PPC at the DV stage. DV activation would be zero 
in a properly calibrated AVITE. (d) The learning law changes TPC --~ DV synapses to eliminate any nonzero DV activation, thus 
learning the reverse of the PPC -~ NP -~ TPC transformation. (Reprinted with permission from Gaudiano & Grossberg, 1991.) 

this model predicts that associative learning from pa- 
rietal cortex to motor cortex takes place during motor  
babbling, and attenuates activation of the difference 
vector cells in the motor cortex during postural inter- 
vals. 

11. VECTOR ASSOCIATIVE MAP: 
ON-LINE DV-MEDIATED LEARNING 

AND P E R F O R M A N C E  

When such a learning law is embedded within a com- 
plete AVITE circuit, the DV can be used for on-line 
regulation of both learning and performance. During 
a performance phase, a new TPC is read into the VITE 
circuit from elsewhere in the network, such as when a 
reaching movement is initiated by a visual represen- 
tation of a target. The new DV is used to update the 
PPC to a new setting that represents the same target 
position as the TPC. As the PPC is updated, the DV is 

zeroed while the TPC is held constant. During the 
learning phase, the DV is used to drive a coordinate 
change in the TPC -+ D V  synapses. Zeroing the DV 
here creates new adaptive weights while both the PPC 
and TPC are held fixed. 

Both the learning and the performance phases use 
the same AVITE circuitry, notably the same DV, for 
their respective functions. Thus, learning and perfor- 
mance can be carried out on-line in a real-time setting, 
unlike schemes such as back propagation. The opera- 
tion whereby an endogenously generated PPC activates 
a corresponding TPC, as in Figure 6, "back propagates" 
information for use in learning, but does so using local 
operations without the intervention of an external 
teacher or a break in on-line processing. 

Autonomous control, or gating, of the learning and 
performance phases is needed to achieve effective on- 
line dynamics. For example, the network needs to dis- 
tinguish whether D V  4= 0 because the TPC and PPC 
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represent different target positions, or because the 
TPC ~ D V synapses are improperly calibrated. In the 
former case, learning should not occur; in the latter 
case, it should occur. Thus, some type of learning gate 
is needed to prevent spurious associations from forming 
between TPCs and PPCs that represent different target 
positions. The design of the total AVITE network shows 
how such distinctions are computed and used for real- 
time control of the learning and performance phases. 
We now explain how this is accomplished. 

12. THE MOTOR BABBLING CYCLE 

During the motor babbling stage, an ERG of random 
vectors is activated. These vectors are input to the PPC 
stage, which integrates them, thereby giving rise to out- 
flow signals that move the arm through the workspace 
(Figure 8a). After each interval of ERG activation and 
PPC integration, the ERG atttomatically shuts off so 
that the arm stops at a particular target position in 
space. 

Offset of the ERG opens an NP gate that copies the 
PPC into the TPC through some fixed transformation 
(Figure 8b). The only requirement is that the trans- 
formation be one-to-one. It could even be realized 
through external, notably visual, feedback. The top- 
down adaptive filter from TPC to DV learns the correct 
reverse transformation (Figure 8c) by driving the DV 
toward zero while the NP gate is open (Figure 8d). 

Then the cycle repeats itself automatically. When 
the ERG becomes active again, it shuts offthe NP gate 
and thus inhibits learning. A new PPC vector is inte- 
grated and another arm movement is elicited. The ERG 
is designed such that across the set of all movement 
trials, its output vectors generate a set of PPCs that 
form an unbiased sample of the workspace. This sample 
of PPCs generates the set of (TPC, PPC) pairs that 
is used to learn the adaptive coordinate change 
TPC --~ D V via a vector associative map. 

13. T H E  ENDOGENOUS RANDOM 
GENERATOR OF WORKSPACE 

SAMPLING BURSTS 

The ERG design embodies an example of opponent 
interactions (Figure 8). The motor babbling cycle is 
controlled by two complementary phases in the ERG 
mechanism: an active (ERG ON) and a quiet (ERG 
OFF) phase. The active phase generates random vectors 
to the PPC. During the quiet phase, input to the PPC 
from the ERG is zero, thereby providing the oppor- 
tunity to learn a stable (TPC, PPC) relationship. In 
addition, there must be a way for the ERG to signal 
onset of the quiet phase so that the NP gate can open 
and copy the PPC into the TPC (Figure 8b). The NP 
gate must not be open at other times: If it were always 
open, any incoming commands to the TPC could be 

distorted by contradictory inputs from the PPC. Offset 
of the active ERG phase is accompanied by the onset 
of a complementary mechanism whose output ener- 
gizes opening of the NP gate. The signal that opens the 
NP gate can also be used to modulate learning in the 
adaptive filter. No learning should occur except when 
the PPC and TPC encode the same position. 

Further details concerning ERG design and auton- 
omous learning of AVITE parameters are found in 
Gaudiano and Grossberg (1991). Gaudiano and 
Grossberg also reported the first example of how iter- 
ated VAM modules, forming a VAM Cascade, could 
be used to learn a simple head-centered spatial repre- 
sentation for control of a VITE motor trajectory gen- 
erator (Figure 9). This head-centered representation 
used a single eye's position and retinal target location 
to learn a I-D spatial map. Such a representation is 
insufficient to control spatial orientation and reaching 
in 3-D space. For this purpose, positional and retinal 
information from both eyes needs to be suitably com- 
bined. How this can be achieved is the central theme 
of this paper. 

14. VOLUNTARY RESCALING OF 
MOVEMENT PROPERTIES BY 

NONSPECIFIC GO, GRO, AND CO SIGNALS 

Before describing details of a VAM for computing 3-D 
head-centered representations, we note an implication 
of the postulate that such vector representations exist. 
In particular, vector representations make it relatively 
easy to use nonspecific control signals to rescale pa- 
rameters of movement and posture. For example, scalar 
multiplication of difference vectors can be used to res- 
cale movement speed or amplitude while preserving 
movement direction. Within an AVITE model for mo- 
tor trajectory control, the DV is multiplied by a GO 
signal before the DV.  GO product is integrated by the 
PPC. To control movement speed without changing 
movement direction, the same scalar GO signal mul- 
tiplies all components of the DV equally--that is, non- 
specifically or without any component-specific bias. 

Now consider a case where an AVITE TPC is being 
updated by a mapping from a DV computed in 3-D 
spatial coordinates. A multiplicative signal applied to 
such a DV may be called a GRO signal because it re- 
scales the amplitude of the movement specified by the 
DV without changing its direction. Bullock and Gross- 
berg ( 1991 ) have noted that such unbiased rescaling 
effects are quite difficult to achieve in alternative models 
that deviate from VITE-like designs. 

Even using VITE-like controllers, however, special- 
ized ancillary circuitry is needed to ensure that the 
nonlinear muscle plant will respond veridically to re- 
scaled VITE commands. The FLETE model (Bullock 
& Grossberg, i 989, 1991; Bullock & Contreras-Vidal, 
1992) clarifies how spinal circuitry works to ensure 
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FIGURE 9, A VAM Cascade: Activation of the upper left map represents eye position and that of the upper right map represents 
target position on the retina. Activation from these two maps cooperate to form a head-centered representation. A given shift in 
eye position can be canceled by an equal and opposite shift in retinal target position, (Reprinted with permission from Gaudiano 
& Grossberg, 1991.) 

unbiased motor responses to nonspecific rescaling sig- 
nals. In addition to explaining how spinal circuits assist 
speed rescaling, the FLETE model explains how a non- 
specific signal sent to all PPC components can achieve 
equal cocontractions of opponent muscles. This co- 
contraction (CO) signal controls joint stiffness to deal 
with variable force conditions without altering the 
planned motor trajectory. 

These three signals--GO, GRO, CO--enable a ste- 
reotyped series of DV's to be transformed into motor 
performances with variable speeds, sizes, and tensions. 
In this way, VAM controllers can be used to tailor a 
planned action sequence to match variable environ- 
mental conditions without having to learn a different 
trajectory for every circumstance. The GO, GRO, and 
CO signals are under voluntary control. Indeed, they 
define different dimensions of volition. Their simple, 
nonspecific mode of action is transformed by the VAM 
architecture into subtle multidimensional movement 
changes. This interaction helps to clarify how the ap- 

parent simplicity of volition may lead to complex bio- 
mechanical consequences. 

Neural sites pertinent to these three types of scaling 
signals have been partly identified. The GO signal shares 
properties with cells in the globus pallidus (Bullock & 
Grossberg, 1989, 1991; Horak & Anderson, 1984a, 
1984b). The CO signal may be expressed in the spinal 
cord and generated in the precentral motor cortex 
(Bullock & Grossberg, 1991; Humphrey & Reed, 
1983 ). It remains to determine where GRO signals are 
computed. Plausible sites include parietal cortex and 
basal ganglia. These correlations are summarized in 
Table I. 

15. VARIATIONS ON A THEME: 
EXPLICIT TEACHERS FOR LEARNING AN 

INVARIANT REPRESENTATION 

This paper explains how six different, but related, ways 
of combining information about eye position, retinal 
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TABLE 1 
Nonspeciflc Control Signals Whereby an Invadant Motor Plan 

is Varied to Meet Changing Environmental Conditions 

Scaled Quantity Will-to-Act Signal Brain Region 

Speed GO Globus pallidus 
Stiffness CO Motor cortex, 

spinal cord 
Size GRO Parietal cortex, 

basal ganglia 

target position, and head-centered target position can 
learn an invariant head-centered spatial representation 
using a VAM network. All six variations are described 
to provide a better insight into the map learning process, 
and because different variations may have advantages 
in different species and applications (Table 2). These 
models are illustrated in Figures l 0-15. In each model, 
stages analogous to those in an AVITE exist. The analog 
of the TPC is a distributed representation of 3-D target 
position that is implicitly defined by converging signals 
from two types of representations: Representations of 
the 3-D position at which the eyes are initially gazing, 
expressed in motor coordinates, and representations of 
a nonfoveated 3-D target position, expressed in visual 
coordinates. The analog of the PPC is a distinct rep- 
resentation of 3-D target position, which acts as a 
teaching signal. These different representations of the 
same 3-D target position send signals to a DV stage, at 
which any discrepancy triggers DV-reducing learning 
within the adaptive weights corresponding to the visual 
representation. 

Figures 10-12 summarize three models which ex- 
ploit the fact that an explicit teaching signal exists dur- 
ing learning of a head-centered map. In Model 1 of 
Figure I0, the two eyes begin by foveating some position 
in 3-D space. Their respective locations in the head are 
jointly coded by the 3-D motor vector that represents 
foveated eye position, as described in Section 3. This 
representation is stored in short-term memory (STM) 
throughout the subsequent eye movement. It also sends 
signals along fixed weight pathways to the DV stage. 

A nonfoveated target position is represented by ac- 
tivation of two retinotopic spatial maps, one associated 
with each eye. During the subsequent eye movement, 
each map stores in STM the position that the target 
initially excited on the retina of its eye. In Model 1, it 

TABLE 2 
Teaching Signals and Visual Representations for the Several 

Models Described in the Text 

Monocular Binocular 
Visual Signals Visual Signals 

Explicit teacher Model 1 Models 2 and 3 
Self-organized teacher Model 4 Models 5 and 6 
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FIGURE 10. Model 1: Monocular visual representations with 
explicit teacher. A target activates a position on each retina 
which is stored until after movement. The initial position of the 
eyes generate the cyclopean head-centered representation (hi, 
h2, hs, h6), which is also stored until after movement. The visual 
and head-centered representations both project to the Differ- 
ence Vector (DV) stage to generate a prediction of what the 
head-centered representation of the target will be when fove- 
ated. After movement, the target is foveated, and the teaching 
vector (hi, h2, hs, h6) instates the actual head-centered rep- 
resentation of the target at a stage analogous to the AVITE 
PPC stage. The Posture Gate then opens and the actual target 
representation is compared with the desired target represen- 
tation to generate an error DV, which changes the adaptive 
weights that link the visual representations to the DV stage. 

is assumed for simplicity that only horizontal eye po- 
sitions are encoded with respect to the egocenter. A 
similar analysis can be carried out for vertical and 
oblique egocentric locations. Each retina is mapped 
into a coarse-coded one-dimensional horizontal array. 
Model l assumes that, at the DV stages, each retino- 
topic array adds its own monocular adaptive signals to 
the nonadaptive signals from the eye position vector in 
order to learn a head-centered visuomotor represen- 
tation. In effect, monocular visual signals from two ret- 
inotopic maps are adaptively combined through learn- 
ing into an effective binocular control signal. The pairs 
of monocular retinotopic signals need to correspond 
to the same 3-D target position in order for effective 
learning to occur. It is assumed that such a selection is 
made by a feedback interaction with a binocular visual 
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FIGURE 11. Model 2: Binocular disparity model with explicit 
teacher. When a target is presented, it activates a single site 
in each retina, as in the monocular model; then the retinas 
combine to form a 2-D spatial map of binocular position and 
disparity. Such a binocular map could be used to attentively 
choose a single target from multiple possible target positions. 
This model operates in the same way as Model 1 (Figure 10). 
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FIGURE 13. Model 4: Monocular model with implicit teacher. 
This model operates similarly to the monocular model with the 
explicit teacher. The difference is that the model discovers 
invariant 3-D target position representations from environmental 
fluctuations. With this model, the eyes do not need an inde- 
pendent system to accurately foveate the target in order to 
produce accurate teaching signals. See text for details. 

representation of the targers position that is computed 
elsewhere in the network. 

The teaching signal in Models 1-3 takes advantage 
of the fact that the saccadic eye movement system can 
learn to make accurate visually reactive movements. 
As noted in Section 5, Grossberg and Kuperstein ( 1986, 

Binocular 
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Binocular 
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Target 
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FIGURE 12. Model 3: Binocular look-up model with explicit 
teacher. This model combines the explicit teacher of Model 1 
with a binocular look-up table that directly combines the mon- 
ocular visual representations into a 2-D spatial array. 

~ture Gate 
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'get Position 

FIGURE 14. Model 5: Binocular disparity model with implicit 
teacher. This model combines the binocular visual map of Model 
2 with the implicit teacher of Model 4. 
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FIGURE 15. Model 6: Binocular look-up model with implicit 
teacher. This model combines the implicit teacher of Model 4 
with the binocular look-up table of Model 3. 

1989) have shown how visual error signals can be used 
by the cerebellum to learn eye movement parameters 
that lead to accurate foveation. After such a correct 
movement takes place, the new positions of both eyes 
provide a head-centered representation of the desired 
target position. We assume that this representation is 
instated at the PPC stage of the spatial VAM, from 
which it propagates to the DV stage as a teaching signal 
after the eye movement is complete. This representation 
is also encoded using the head-centered opponent motor 
map of eye position that was described in Section 3. 

After an accurate eye movement takes place, three 
types of information are simultaneously available: a 
motor representation of both eyes' positions before the 
movement; a retinal representation of the target posi- 
tion on both retinas before the movement; and a motor 
representation of both eyes' positions after the move- 
ment. A VAM module enables the first two types of 
information to learn to predict the third. After this 
happens, all combinations of initial eye position and 
retinal position that predict the same final eye position 
will read-out the same representation of this position 
at the VAM DV Stage. Note that without the retinotopic 
input, the DV stage measures the difference between 
the initial and final eye positions needed to foveate a 
3-D target in terms of a fixed motor metric. VAM 
learning calibrates retinotopic inputs to be consistent 
with this motor metric. Once calibrated, these retino- 
topic inputs combine with cyclopean eye position inputs 
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to compute head-centered target positions that are in- 
variant under eye rotations and the retinal translations 
of target images that they induce. VAM learning hereby 
converts a noninvariant representation of final eye po- 
sition into an invariant representation of head-centered 
target position. 

Model 2 uses the same teaching signal as Model 1. 
Instead of using pairs of monocularly activated retinas, 
Model 2 assumes that binocular vision has converted 
these monocular activations into a binocular retinotopic 
representation of target position, as in Figure 11 and 
Table 2. Such a binocular representation encodes the 
fused binocular position and the binocular disparity of 
the target, among other parameters. If only horizontal 
positions are considered, then horizontal position and 
binocular disparity may be combined into a coarse- 
coded 2-D spatial map. The fused binocular position 
is computed as the average of the individual left eye 
position and right eye position of the target. The bin- 
ocular disparity is computed as the difference of the 
monocular target positions. The fused binocular po- 
sition approximates the property of displacement, or 
allelotropia (Kaufman. 1974; von Tschermak-Seyse- 
negg, 1952; Werner. 1937 ). In this phenomenon, when 
a pattern of letters AB C is viewed through one eye and 
a pattern A BC is viewed through the other eye, the 
letter B can be seen in depth at a position halfway be- 
tween A and C. Thus, the fused binocular position of 
B averages the left eye and right eye monocular positions 
of B. An explanation of how allelotropia occurs is given 
in Grossberg (1992). When the two eyes foveate a tar- 
get, these visually derived binocular position and dis- 
parity perform essentially the same averaging and dif- 
ference computations as the head-centered estimates 
of cyclopean azimuth and vergence that are derived 
from motor outflow commands to the eye muscles. It 
is of considerable interest that the motor computations 
of cyclopean eye position and visual computations of 
binocular target position both estimate the same types 
of quantities in Models 2 and 5. In Model 3, a simpler 
2-D binocular spatial map is used for comparison ( Fig- 
ure 12); namely, the ( i , j )  th map position codes the i th 

and jth positions in the left and right eye, respectively. 
In both Model 2 and Model 3, the binocular represen- 
tation of target position and the binocular representa- 
tion of initial eye position are stored before the eye 
movement occurs. After the eye movement is over, the 
VAM learns to combine these binocular representations 
into a many-to-one invariant representation of 3-D 
target position. 

16. VARIATIONS ON A THEME:  
AUTONOMOUS DISCOVERY OF AN 

INVARIANT REPRESENTATION 

Models 4-6 illustrate a remarkable property of VAM 
learning. A VAM can discover an invariant many-to- 
one representation of 3-D target position even if an 
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explicit teacher is not used, or does not exist. VAM 
learning can feed upon DV error signals that are gen- 
erated by the statistics of the environment in order to 
discover invariant mapping properties that are implicit 
in these fluctuations. 

Model 4 uses the monocular retinotopic represen- 
tations of Model 1 (Figure 13). Model 5 uses the bin- 
ocular representation of Model 2 (Figure 14). Model 
6 uses the binocular representation of Model 3 ( Figure 
15). Models 4-6 each assume that the initial eye po- 
sition signals and retinotopic signals are combined be- 
fore an eye movement takes place and that the com- 
bination is stored at the PPC stage throughout the eye 
movement. This stored vector provides an estimate of  
target position which may or may not be correct. In 
order to store this estimate, the model exploits the ex- 
istence of a gating, or multiplicative, operation between 
the DV and the PPC. In the VITE model, for example, 
a GO signal gates the DV before the PPC can integrate 
the DV. GO product (Sections 8 and 14). The GO 
signal is an example of a movement gate because it is 
open during a movement. A posture gate is a gate that 
is open between movements when the system is main- 
taining a fixed posture. Pauser cells are examples of  
posture gates that close during saccadic eye movements 
(Grossberg & Kuperstein, 1989; Keller, 1981; Robin- 
son, 1975; Schlag-Rey & Schlag, 1983). 

In Models 4-6, we assume the existence of a posture 
gate, or pauser cell, between the DV and the PPC ( Fig- 
ures 13-15). This gate opens while the initial eye po- 
sition-plus-retinal target position estimate is loaded 
from the distributed TPC stages into the PPC stages 
via the DV stage. The gate closes during the movement, 
thereby protecting the stored estimate from being al- 
tered by the changing eye positions and retinal positions 
that are activated during the movement. After the 
movement is over, a new estimate of eye position and 
retinal position is read out of their respective TPCs. 
The DV stage compares this new estimate with the old, 
stored estimate. Nonzero components of the DV act 
as error signals that change the adaptive weights of the 
TPC--~ D V  pathways via VAM learning. It is assumed 
that the pauser gate stays closed long enough after the 
movement occurs for some such learning to occur, be- 
fore the new TPC estimate is loaded into the PPC. Then 
the process repeats itself. The computer simulations 
summarized below show that the VAM can learn an 
invariant many-to-one head-centered representation 
from the time series of these internally generated error 
estimates. 

17. AN E X P O S I T I O N  OF M O D E L  4 

For definiteness, we describe the equations for Model 
4 in detail before showing representative simulations 
of all the models. The network simulations are restricted 
to movements in the horizontal plane. A mathematical 

analysis is also provided in Section 19 that demonstrates 
the existence of an ideal set of adaptive weights. Com- 
puter simulations show that the network weights con- 
verge to the ideal weights during VAM learning. The 
simulations also show that the network discovers an 
invariant and unique representation of target location, 
which can then be used to generate motor  commands 
to foveate or reach the target. 

Model 4 is summarized in Figure 13. Given a target 
in the horizontal plane at some distance r from the 
cyclopean egocenter and angle 0 from the sagittal plane, 
the angles that the eyes must realize in order to foveate 
the target are given by 

and 

0L = tan- ' (  RHsinOtt+d/21R,,cos 0 } 

0, = tan- ' (  Rnsin 0tl - - d / 2  / 
RHcos Oft ] " 

(28) 

(29) 

where d is the distance between rotation centers of the 
eyes (set to 2.75 inches in the simulations). Given angle 
OL of the left eye, the corollary discharges of the left 
extraocular muscles that maintain the eye at this po- 
sition follow from eqns (7) and (8);  namely, 

1 OL 
- , ( 30 )  

1 OL 
1 2 = ~ + - - .  (31) 

_ 7 1 "  

and 

Note that the sum /t + 12 is constant and equal to l, 
independent of the value Of 0L, as in eqn (7).  Likewise, 
for the right angle of OR, it follows from eqns (9) and 
( 10 ) that 

and 

I OR 
rt . . . .  , (32) 

2 7r 

1 OR 
r2 = ~ + - - .  (33) 

_ 7 1 "  

As in eqns (21) and (22), the opponent head-cen- 
tered representation of OH is given by 

and 

r~ +/ t  
hi = - -  (34) 

2 

h 2 -  r2+/2 (35) 
2 

An opponent head-centered representation of target 
vergence can likewise be derived from 

tB = ½ + rt - I i ,  ( 3 6 )  
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and 

h6 = ½ + 12 - r2. (37) 

The motor  vector (h~, h2, hs, h6) represents the 3-D 
position of a foveated target in the horizontal plane. 

When a target is presented in a position in which 
the eyes are not looking, as in Figure 10, the target 
image excites the retinas at a certain distance from the 
fovea. This distance depends upon the angle through 
which each eye must move to foveate the target. When 
the eyes are foveating a position ( R  P, 0 p) with radius 
R p and azimuth 0 p, the present eye angles can be cal- 
culated from eqns (28) and (29). When a new target 
is presented at position (R r 0 r ) ,  the eye angles nec- 
essary to foveate the target (Or, O r)  can also be cal- 
culated from eqns (28) and (29). The difference be- 
tween the angles is given by 

,X0L = 0 f -  0~ (38) 

and 

AOR=0 r - 0  P. (39) 

Each retina consisted of a 1-D array of nodes since 
the simulations reported here consider only horizontal 
eye movements. The target position Tthat  is maximally 
activated by a light corresponding to angle A0 (either 
AOL or AOn) is given by 

(A0+ A0max)(Tmax -- I) 
T = (40) 

A0ma~ 

where A0max is the maximum angle relative to the fovea 
at which a target will fall on the retina (set to 100 ° in 
the simulations), and Tma., is the total number of retinal 
positions. This formula sweeps out nodal positions be- 
tween zero and Tmax - 1. If the analog target position 
T falls between two discrete positions i and i + 1, 
namely, i _< T _< i + 1, then the retinal activity values 
V~ and V~+t at these nodes were set equal to V~ = T - i 
and V~+ t = i + 1 - T. All other ~ = 0. This interpo- 
lation scheme defines a continuous linear generalization 
gradient across the retina, which reduced quantization 
effects and speeded learning. The subscript indicating 
the left or the right eye has been dropped because this 
formula works for both. When there are two I-D mon- 
ocular retinas, as in Models 1 and 4, two monocular 
representations are activated. When binocular 2-D 
maps are used, as in Models 2, 3, 5, and 6, only one 
representation is activated. In all cases, the retina can 
be considered to be one large column vector. This vision 
vector is denoted by V in all models. This notation 
makes the following equations independent of the type 
of architecture used. Generalization gradients were also 
used in the binocular visual representations, as de- 
scribed below. 

The activity at the DV stage is given by 

Ahi = hi + Z~ . V -  hi.  (41) 

where i -- 1, 2, 5, 6; hi is the present foveated eye po- 
sition vector; Z~ is the vector of adaptive weights from 
the retina to component  i; V is the vision vector; and 
]1i is the previous internal representation of target lo- 
cation. Notation Zi • V denotes the dot product of Zi 
with V. Conceptually, hi + Z~. V represents the pre- 
diction of the head-centered representation by the net- 
work. It is assumed that h, is zero when a target first 
appears. Thus,/x]t~ stores this prediction. After the eyes 
move, the stored Ah~ vector is compared with the new 
h, + Zi • V vector. Now, Ahi codes the difference be- 
tween two predictions of the location of the s a m e  target. 
Any nonzero value indicates an error or, more precisely, 
an inconsistency in the internal representation. This 
error is used to change the weights in such a way that 
the error is reduced by the VAM learning equation: 

dzu - 6Ahrv i, (42) 
dt 

where z o is the weight from vision component  i to DV 
component j ,  6 is the learning rate, A/tj is the jth DV 
component, and xi is the activity o f t h e j  t" retinal com- 
ponent. 

The simulations were carried out as follows: 
I. The eyes were randomly moved to some fixation 

point in their work space (R p, 0e). 
2. The head-centered representation of this point was 

calculated according to eqns ( 34 ) - (  37 ). 
3. A target was presented at a random position (R r, 

o r ) .  

4. The vision indices and activations were calculated 
as discussed above. 

5. /x]li was calculated according to eqn (41) with 
hi = 0. 

6. The eyes were moved to a random new location 
(the target stays the same).  

7. ]1~ was set equal to the previous values of Ahi. 
8. The new vision and eye position representations 

were calculated for the new eye positions. 
9. The new values of Ah~ were calculated according 

to eqn (41) with hi equal to its new value. 
10. The weights were updated according to eqn (42). 
11. The cycle was repeated. 

18. C O M P U T E R  S I M U L A T I O N S  

The network was trained for 500,000 trials with a 
learning rate t~ in eqn (42) of 0.5. The work space was 
defined by a minimum radius of l0 inches, a maximum 
radius of 30 inches, a minimum On o f - 4 5  °, and a 
maximum On of +45 °. Adaptive weights -0 were ini- 
tialized to zero. Each retina had 50 discrete posi- 
tions i. 

18.1. Gaze Angle Component 

Figure 16 shows the results for the hj component of 
gaze angle. The target was moved randomly to all points 
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FIGURE 16. Performance of Model 4 on the gaze angle component hi: The model was trained over 500,000 trials at a learning rate 
of ~ = 0.5. (a) Plot of hi as target vergence is changed with target gaze angle equal to 0 °, 15% 30 °, and 45 ° while the eyes foveate 
a point 20 inches directly in front of the nose. Ideally, hi should be independent of the target vergence and should shift for shifts 
in gaze angle. (b) Plot of/~ as target gaze angle is changed with target vergence equal to 15.6 °, 12.1% 7.9 °, and 5.2 °. ideally, h~ 
should be linear with target gaze angle and independent of target vergence. (c) Plot of h~ as the present fixation vergence is 
changed while the target position remains 20 inches directly in front of the head with present gaze angle equal to 0% 15 ° , 30 ° , and 
45 °. Ideally, h~ should not change as the eyes move as long as the target is fixed. (d) Plot of h I a s  the present fixation gaze angle 
is moved around the workspace with present vergence equal to 15.6 °, 12.1 °, 7.9 °, and 5.2 °. Ideally, there should be one flat curve 
indicating that/~1 is not changing due to movement of the eyes. 

in the workspace and the foveation point was held sta- 
tionary at R e = 20 and 0 P = 0 °. Ideally, ]h should 
change linearly with the target gaze angle. Figures 16a 
and 16b show that, indeed, the h~ component is linear 
with the target gaze angle and is essentially independent 
of target vergence. In Figure 16a, h~ is shown as the 
target vergence is changed for different values of the 
target gaze angle 0 r with the foveation point held sta- 
tionary at R e = 20 and 0 e = 0 °. Note that ]h does not 
change with changes in target vergence. However, it does 
change for changes in target gaze angle, as shown in 
Figure 16b. Figure 16b shows that, in fact, ]h changes 
linearly with target gaze angle and the slope is - l / 7 r  
as predicted in the analysis of Section 19 below. The 
dynamic range of h~ is approximately 0.5 in all the 
models. 

In Figure 16c and 16d, fh is shown as the foveation 
vergence and gaze angle were varied over the entire 
workspace while the target was stationary (R v = 20, 
0 r = 0 ° ). Since the target does not change position, its 
internal representation should not change. These figures 
show that the ]h component does not change. Together 

these figures show that the internal representation of 
target gaze angle is invariant over eye rotations. 

18.2. Vergence Component 

Figures 17a and 17b show how the internal represen- 
tation of target vergence h5 changes as the target is 
moved to all points in the workspace while the present 
foveation position is fixed at R e = 20, 0 e = 0 °. Ideally, 
]15 should change linearly with target vergence and not 
at all with target gaze angle. Figure 17a shows ]15 as the 
target vergence is changed for different values of the 
gaze angle. As predicted in the analysis of Section 19 
below, the slope is positive with a value of l/~r. The 
dynamic range of h5 extends from .38 to .44. Figure 
17b demonstrates that ]15 changes little when the target 
gaze angle is changed and target vergence is fixed, al- 
though this is not a requirement for invariance. To- 
gether, these graphs show that a unique target vergence 
is mapped to a unique learned internal representation 
of target vergence throughout the workspace. 

Figures 17c and 17d show that ]75 is invariant when 
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FIGURE 17. Performance of Model 4 on the vergence component hs: Training parameters are the same as those of Figure 15. (a) 
Plot of hs as the target vergence is changed with target gaze angle equal to 0% 15 °, 30 °, and 45% Ideally, hs should be linear with 
target vergence and independent of the target gaze angle. (b) Plot of hs as the target gaze angle is varied with target vergence 
equal to 15.6% 12.1°, 7.9% and 5.2 °. Idea,y, there should be four distinct, flat curves. (c) Plot of/~s as the present fixation vergence 
is varied with present gaze angle equal to 0 °, 15% 30 °, and 45% Ideally, there should be one flat curve. (d) Plot of hs as the present 
fixation gaze angle is varied with present fixation vergence 15.6 °, 12.1 o, 7.9% and 5.2% Ideally, there should be one fiat curve. 

the target is stationary and the present foveation posi- 
tion is moved to all points in the work space. Figure 
17c shows how ]15 changes with changes in the fixation 
radius for different values of fixation gaze angle. The 
curve is nearly flat and all the curves are nearly iden- 
tical. The slope and differences are not significant rel- 
ative to the dynamic range. These slight aberrations are 
due to the fact that the weights have not yet converged 
to their ideal values. In simulations where the network 
was allowed to train longer, these fluctuations disap- 
peared. Figure 17d shows how h5 responds to changes 
in foveation gaze angle for different foveation radii. Ide- 
ally, the curves should not be distinguishable. The small 
differences between the actual weights and the ideal 
weights again disappear when the network is allowed 
to train longer. 

18.3. Adaptive Weights 

The system analysis predicts values to which the net- 
work should converge for perfect performance (see 
Section 19). The predictions specify a slope and an 
arbitrary offset. In this section, we examine the learned 
weight matrices and show that they do indeed converge 

to the predicted slope. Figure 18a shows the weights 
from the left retina to the h~ DV component. The hor- 
izontal axis is the retinal node number. Each retinal 
node corresponds to a certain value of retinal angle 
/x0L. The relationship between node number and retinal 
angle is linear, but it need not be. Along with the actual 
weights, Figure 18a shows the predicted ideal weights 
with zero offset; i.e., Co in eqn (48). The slopes are 
identical, as described; the offsets are arbitrary and do 
not influence performance. The deviations from the 
ideal weights at the extremes are due to the fact that 
these locations lie beyond the specified work space and 
are never sampled and so never learned. The value of 
the offset appears to depend upon two factors. The first 
factor is the average weight at the beginning of training. 
In this simulation, the average value was 0.0. Note that 
the offset is about 0.0. The second factor is the distri- 
bution of sampled retinal locations. Because the left 
eye is left of the center of a symmetric work space, 
targets are more likely to occur in the left portion of 
the fovea. This causes the weight curve to shift to the 
right, thereby increasing the offset. Just the opposite 
happens for the weights from the right retina, as is 
shown in Figure 18b where the offset is slightly less 
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FIGURE 18. Learned adaptive weight values for Model 4. The ideal weight values are also shown. The actual weights may differ 
from the ideal weights by an offset and still give ideal performance. (a)  Weights from the left retina to the hi component of the DV 
stage. (b) Weights from the right retina to the h~ component of the DV stage. (c) Weights from the left retina to the h s component 
of the DV stage. (d) Weights from the right retina to the/~s component of the DV stage. 

than that of Figure 18a. Figure 18b demonstrates that 
weights corresponding to the right retina converge on 
the ideal slope. Figures 18c and 18d show the weight 
matrices from the left and right retinas to the h5 DV 
component along with their ideal, zero-offset values. 
(See Section 19 for a discussion of these values.) As 
can be seen, the difference in slopes between the actual 
and ideal are nearly zero. 

The performance of Models 1-3, 5, and 6 were also 
evaluated using computer simulations. The perfor- 
mance graphs for all models on both the vergence and 
gaze angle components were essentially identical to 
those of Model 4 shown in Figures 16 and 17. For all 
models, the steady-state error for both components was 
below .5%, indicating that all the models have similar 
asymptotic performance. The main difference in per- 
formances was in the time it took the networks to con- 
verge. Model 1 (explicit, monocular) converged the 
fastest (less than 400,000 trials at 6 = .5). Models 2 
and 3 (both explicit, binocular) converged in less than 
2,000,000 trials at ~i = .5. The models with the implicit 
teacher (Models 4-6) took slightly longer to converge 
than their explicit counterparts. The binocular models 
converged more slowly because the interpolation 
scheme used in the simulations caused many sites to 
become active at once, but each with a low activation 

level; thus, each location learned more slowly. In sim- 
ulations with only a few locations active at a high level, 
the binocular models converged as quickly as the mon- 
ocular models. The convergence of Models 2 (explicit) 
and 5 (implicit) are shown in Figure 19 for both the 
gaze angle and vergence components. Each point rep- 
resents the average absolute error at the DV stage over 
1,000 trials; the vertical axis in this error was divided 
by the total dynamic range of the component. Because 
all points in the work space are being sampled randomly 
during the generation of the curve in Figure 19, this is 
a measure of the global performance of the network. 

The learning rate depended upon two factors: How 
often a node became active, and the activity that it 
attained. For the monocular models, each node became 
active on approximately 4.8% of the trials with an av- 
erage activity of .5. For the binocular models, each node 
became active on approximately 3.2% of the trials with 
an average value of .018. 

19. DERIVATION OF IDEAL 
W E I G H T  VECTORS 

It will now be shown for Model 4 that there exists a set 
of weights for which the performance of the network 
is perfect, given a retina with infinite resolution (i.e., 
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FIGURE 19. Convergence plots for Models 2 (Explicit) and 5 (Implicit). The vertical axis is the error (averaged over 1,000 trials) 
expressed as a fraction of the dynamic range for the given component. (a) Convergence of the gaze angle hi component. (b) 
Convergence of the gaze angle hs component. 

no quantization error) on which each target activates 
a single location. These results can be extended to a 
discrete retina in which a target activates several loca- 
tions in a smooth manner. First we review the pertinent 
geometry and system equations, then we derive a dif- 
ferential equation for the ideal weights using the per- 
formance constraints. Next we solve the differential 
equation to obtain the ideal weights and show that the 
other performance constraints are also satisfied. 

There are six basic performance constraints on the 
system. The basic idea is that an internal representation 
of a target position should not change when the target 
is fixed and the foveation position is changed. Also, 
there should be a unique mapping between the internal 
representation and its external analog. These con- 
straints are mathematically defined as follows. The in- 
ternal representation of target vergence is ]75. Invariance 
of h5 over eye movements is defined by the equations 

Oh5 
= 0 ( 4 3 )  

07 p 

and 

- 0.  ( 4 4 )  
O0 p 

Equations (43) and (44) require that h5 does not change 
for changes in fixation vergence and gaze angle. The 
uniqueness constraint can be fulfilled by the following 
equation: 

oh5 
0 ~  = Cv'  ( 4 5 )  

where Cv is a nonzero constant. Equation (45) means 
that the internal representation of vergence changes 
linearly with actual target vergence 3' r. Linearity is a 
more rigorous constraint than uniqueness but, as shown 
below, it is achieved by the network. 

The internal representation of the gaze angle is hi. 
Invariance of this component over changes in fixation 
position is given by equations 

and 

Oh, 
- 0 ( 4 6 )  

00 p 

0il, 
- 0 ( 4 7 )  

07 e 

The uniqueness (linearity) constraint is given by 

0h------2 - Co. (48) 
07 r 

We now describe how to define ideal weights such that 
all the six constraints (43 ) - (48 )  are obeyed. 

The geometry of the foveation system is shown in 
Figure 20. The eyes are at some fixation position when 
a new target is presented. When the eyes foveate the 
fixation point, the angle of the left eye is 

~,e = 0Le _ 0~. (49) 

For the target position, 

,r T = O [ -  OL (50) 

Thus, the change in vergence due to the eye movement 
is 

v r - v p = ( O [ - O ~ ) - ( O ~ - O ~ ) .  (51) 

Rearranging terms gives 

v T -  v ~= (O r -  O ~ ) - ( O r -  0~), (52) 

which is just the difference between the eye angles before 
and after the movement: 

~,r_ 7e = A0L -- AOR, (53) 

where A0L and A0R define how far the left eye and right 
eye need to move to foveate the target. Combining eqns 
(8),  (10), (16), and (22) leads to approximations for 
0 e and 0 r, namely, 

0 e ~  OLP+OP (54) 
2 
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Initial Gaze Target  

Left Eye Right E y e  

VlGURE 20. Geometry of a-D target localization: In an initial 
foveatefl gaze position, the left eye assumes an angle of O~, 
and the right eye assumes an angle of 0 ~. To foveate the target 
position, the eyes assume angles 0 r and 0 r. The angular change 
AOt is the difference between the angle that the left eye must 
assume to foveate the target and the angle where it starts out. 
Quantity AOR is defined similarly. Quantity 3, p is the angle formed 
by the intersection of the rays emanating from the eyes in their 
initial gaze position. Vergence ~,r is defined similarly. 

and 

0~,~ 0~+ o~ 155) 
2 

which are accurate for points whose distance from the 
head is sufficiently large relative to the distance between 
the eyes. Thus, as in eqn (53), 

Or - Or, ~ A0L + ~0R (56) 
2 

By eqns ( 7 ) and ( 8 ), the corollary discharge of the left 
extraocular muscle of the left eye is 

1, . . . .  (57) 
2 

and the left extraocular muscle of the right eye is 

o~ 
r, . . . .  . (58) 

2 

Using eqns (49), ( 57 ), and ( 58 ), the simulated internal 
representation of vergence in eqn (36) becomes 

1 1 1 
h5 = ~ +  r , - l ,  = ~ + - 3 ,  p (59) 

- -  - -  7r 

which implies that 

Ohs_ 1 
0 7 P 71" ' 

(60) 

Ifa target activates only one retinal position of each 
eye with a strength of 1.0, then, by eqn (41 ), the internal 
representation of target vergence is 

]is = hs + zL5 + zns, (61) 

where ZLS is the weight from the active location in the 
left retina to the ]15 component of the DV stage, and 

za5 is the weight from the active location in the right 
retina. Now differentiating both sides ofeqn (61) with 
respect to the fixation vergence 3" e and setting the result 
equal to zero, as required by eqn (43),  we obtain 

Oh__2 Oh_._£s+ OzL.__.2+ OzR.___2= O. 
37 v 07 e 3~ v 07 e 

(62) 

Combining eqns (60) and ( 62 ) shows that 

OzL5 OzR5 
7r ~ + 7r = -1,  (63) 

03, e 03, v 

which specifies how changes in the internal represen- 
tation of vergence are balanced against changes in the 
vergence weights as 3, P varies. Equation (53) provides 
another equation of balance for the corresponding ex- 
ternal parameters. Here vergence changes are balanced 
against azimuth changes. Comparison ofeqns (53) and 
(63) suggests that vergence weights adapt to azimuth 
changes. More precisely, differentiating eqn (53) with 
respect to 3' p yields 

OAOL OAOR 
- I  . . . .  (64) 

03' t, 07 v • 

Equating corresponding terms in eqns (63) and (64) 
leads to the anzatz that 

and 

OzL5 _ 1 3AOL 
0-r e 7r 03, e (65) 

OzRs_ 10AOR 
03 ,e 7r 03, e"  (66) 

Integrating these equations suggests that the ideal ver- 
gence weights are 

and 

I 
zLs = - AOt. + CLs (67) 

7 r  

--1 
ZR5 = - - A O R  + CRs, (68) 

where CL5 and CR5 are constants of integration. When 
a target is presented, it activates locations on the left 
and right retinas given by A0L and AOR, which define 
how far the eyes have to move to foveate the target (see 
Figure 2 and eqn (53)). Equations (67) and (68) specify 
ideal weights for these locations. When these equations 
are substituted into eqn (61), the change of h5 with 
respect to fixation gaze angle 0 e is zero, as required by 
eqn (44), and the change with respect to 3' P is a positive 
constant 1 / 7r, as required by eqn (60). 

Using a similar procedure, the weights from each of 
the retinas to the ]h component can be derived and are 
given by 

- I  
-LJ -- ~ AOL + CLt (69) 
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and 

- l  
zRt - ~ A0R + CRy. (70) 

These weight formulas are accurate approximations as 
long as the target and fixation points are far relative to 
the distance between the eyes. These weights provide 
invariance with respect to changes in fixation vergence 
and gaze angle, as required by eqns (46) and (47). The 
internal representation of target gaze angle is also linear, 
with slope Co = - 1 / T  r, which guarantees weight 
uniqueness by eqn (48). 

This type of analysis has also been used to derive 
the weights for a 2-D binocular look-up table, and for 
networks wherein a target generates a diffuse Gaussian 
region of activation on the retinas. The computer sim- 
ulations show that all the networks actually converge 
to these ideal weights. 

20. A SKETCH OF MODEL 5 

In order to clarify the key differences between the mon- 
ocular and binocular models, the main features of 
Model 5 will now be summarized. Model 5 differs from 
Model 4 in its use of binocular position and disparity 
computations. The binocular position was computed 
from the equation 

AOn = ½ ( AOL + AOR) ( 71 ) 

and the binocular disparity was computed from the 
equation 

AD = A0t. - A0R ( 72 ) 

where A0L and AOn are the retinal offsets of the target 
in the left and right retinas. The binocular spatial map 
index corresponding to AD is given by 

( A D - F  A O m a x ) ( r m a  x - 1) 
T = (74) 

ADma~ 

where ADmax is the maximum deviation of the disparity, 
set to 15 ° in the simulations, and Tmax is the maximum 
number of positions in each map dimension. The bin- 
ocular spatial index for the position was calculated as 
in eqn (40) with A0 = A0n and A0max = 100 °. 

The ideal weights from the map to the DV stage 
were derived assuming that only one point becomes 
active in the map with an activity of one. The ideal 
weights to the gaze angle component hj are 

- A0~t 
z l  = - -  + C , .  ( 7 5 )  

The ideal weights to the vergence angle component 
(hs) are 

-AD 
z5 - + C5, (76) 

71" 

where Ct and C5 are constants of integration. Note that 
the weights from a column (constant AD) to Ah5 are 
the same. Likewise all the weights from a row (constant 
A0n) to A]I~ are the same. 

This network was simulated using a 50 X 50 visual 
position map. The following generalization gradient was 
used to convert analog target position (AOn, AD) into 
activations of the vision vector V. Suppose that the 
distance from the target position to binocular lattice 
position ( i, j )  is 

d,j = V(AOn - i) 2 + (AD - j ) " .  (77) 

Let 

v,j= -3--~2 if do<3V2- 

otherwise 

Then the activity at (i, j )  of  the vision vector equals 

(78) 

1~ =v~, (79) 

where v = Zi.~ v0. Thus, the total activity of the vision 
vector is normalized to equal 1. 

21. CONCLUDING REMARKS: 
INTERACTIONS BETWEEN VISUAL, 

MOTOR, AND SPATIAL REPRESENTATIONS 

This paper suggests how outflow eye movement com- 
mands from each of the two eyes can be binocularly 
combined. Two successive stages of opponent processing 
convert these commands into a cyclopean representa- 
tion of head-centered azimuth, elevation, and vergence. 
This motor representation specifies the position in 
3-D space that the two eyes are both foveating at any 
time. 

When a nonfoveated visual target activates both ret- 
inas, the activated retinal locations, taken together with 
the cyclopean eye position representation, implicitly 
code the position of the target in 3-D space. Such a 
distributed representation may be transformed, via a 
VAM learning module, into an invariant head-centered 
representation of 3-D target position. The VAM model 
illustrates how an accurately tuned visually reactive 
movement system can be a source of teaching signals 
whereby the many-to-one transformation is learned. 
After VAM learning takes place, the invariant head- 
centered representation can control internally p lanned  
movements that are capable of overriding visually re- 
active movements that would otherwise occur in re- 
sponse to environmental fluctuations (Grossberg & 
Kuperstein, 1989). 

VAM learning is also capable of discovering an in- 
variant spatial representation even if an explicit teach- 
ing signal does not exist. Here, the model detects in- 
variant structure that is hidden in a time series of en- 
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vironmental fluctuations. It does so by comparing 
previous estimates of the invariant with present data 
that represent the same target position, and uses DV 
learning to cancel inconsistent signals. 

This comparison process utilizes a multiplicative 
gate that acts between the DV and PPC stages of the 
VAM. In related VAM applications, such gates can 
control the production of variable movement speeds 
(GO signal ) or variable movement sizes (GRO signal). 
Thus, the gating option is a general design constraint 
that enables invariant structure to be discovered for 
purposes of learning, while also allowing this invariant 
structure to be performed through variable movements 
whose characteristics may be flexibly modified to meet 
changing environmental conditions. The gates thus af- 
ford a huge reduction in memory load by allowing a 
single learned invariant structure to be expressed in 
many different ways. 

From a more cognitive perspective, these various 
gating signals are all different expressions of the will- 
to-act. The VAM modules provide a unified compu- 
tational format wherein the will-to-act can be expressed 
in several ways while invariant transformations are 
learned in real time. In particular, a series of VAM 
modules, forming a VAM Cascade, can learn a sensory- 
to-spatial transformation followed by a spatial-to-motor 
transformation. The fact that a single type of neural 
circuit can be used for both types of transformation, 
while providing the crucial property of synchronous 
trajectory formation for free, clarifies how consistent 
perception-action cycles are organized. It also provides 
a new understanding of why neural vectors are com- 
puted in the several cortical areas--including parietal, 
frontal, and motor cortices--that contribute to spatial 
orientation and motor control (Bruce & Goldberg, 
1984; Georgopouios et al., 1982; Georgopoulos et al., 
1986; Gnadt & Anderson, 1988). 
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