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On-line automatic slice positioning for brain MR imagingB
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In clinical brain MR imaging protocols, the technician collects a quick

localizer and manually positions the subsequent scans using the

localizer as a guide. We present a method for automatic slice

positioning using a rapidly acquired 3D localizer. The localizer is

automatically aligned to a statistical atlas representing 40 healthy

subjects. The atlas contains the probability of a given tissue type

occurring at a given location in atlas space and the conditional

probability distribution of the multi-spectral MRI intensity values for a

given tissue class. Accurate rigid alignment of each subject to an atlas

ensures that all patients’ scans are acquired in a consistent manner. A

further benefit is that slices are positioned consistently over time, so

that scans of patients returning for follow-up imaging can be compared

side-by-side to accurately monitor the progression of illness. The

procedure also helps ensure that left/right asymmetries reflect true

anatomy rather than being the result of oblique slice positioning

relative to the underlying anatomy. The use of an atlas-based

procedure eliminates the need to refer to a database of previously

scanned images of the same patient and ensures corresponding

alignment across scanners and sites, without requiring fiducial

markers. Since the registration method is probabilistic, the registration

error tends to increase smoothly in the presence of increasing noise and

unusual anatomy or pathology rather than failing catastrophically.

Translations and rotations relative to the atlas can be set so that

planning can be done in anatomical space, rather than scanner
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coordinates, and stored as part of the protocol allowing standardization

of slice orientations.
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Introduction

We present an automatic prospective method for prescribing

MRI slice positions in the brain. Precise and consistent

alignment of scans is useful in research as well as in clinical

practice to the radiologist reading scans on a daily basis. Precise

alignment implies that scans are collected exactly orthogonal to

the midline so that observed asymmetries reflect true anatomy

and are not simply due to inaccurate scan prescription.

Consistent alignment implies that all patients are scanned in

the same way and can be compared side-by-side as far as

possible given the natural variance in brain anatomy. Most

importantly, if the same subject is scanned during multiple

scanning sessions, consistent alignment implies that brain

pathology can be tracked accurately and progress over time

can be quantified. This has application in tracking lesions in

multiple sclerosis (Molyneux et al., 1998), tumors, stroke, and

other anatomically apparent neuropathologic symptoms (Free-

borough et al., 1996). Standardized alignment is particularly

useful when voxels are highly anisotropic, as is typical of clinical

scans. Our method will aid the MR technologist in completing

routine clinical studies in as short a time as possible, while

minimizing inadvertent errors and inconsistencies in alignment

between subjects.

A method for automatically setting the scan prescription was

proposed by Itti et al. (2001). Their method requires a single

volume scan, and their algorithm applies a segmentation to find

the brain surface. A transformation matching this to a reference

surface is found. Orientation differences between subject and

http://www.sciencedirect.com
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reference are resolved within less than 5-. Welch et al. (2002)

have proposed a method for alignment using rapidly acquired

spherical navigator echoes. This method is fast and accurate but

requires a reference navigator for each subject and is therefore

ideally suited for automatic registration between scans of the

same subject and not between scans of different subjects (Welch

et al., 2004). Stereotactic systems have been used in MRI and

CT to ensure a standard coordinate system for neurosurgical

applications (Heilbrun et al., 1987; Kondziolka et al., 1992) but

cannot be used in clinical routine because of the time-

consuming and invasive nature of the procedure. A device

worn like a pair of eyeglasses that supports fiducial markers

visible in MR images has been proposed along with a

registration algorithm (Oshio et al., 1996).

Solutions to the problem of off-line motion correction for

between-volume correction are well-established (Cox and Jesma-

nowicz, 1999; Jenkinson and Smith, 2001). However, off-line

motion correction is impractical in routine clinical practice as it

requires additional processing time, results in an increased data

amount, and introduces resampling artifacts. These artifacts are

especially pronounced in the case of the highly non-isotropic voxels
Fig. 1. Workflow for automatic scan positioning with matrices relating the target pa

alignment localizer (AAL).
that are typical of clinical scans, making the comparison of

resampled clinical volumes in longitudinal clinical studies less

reliable. The quality of the registration itself is also confounded by

the non-isotropic voxels. In our procedure, the alignment is based on

a rapidly acquired 3D localizer scan with isotropic spatial resolution.
Materials and methods

The procedure begins with a localizer scan during which two

medium-resolution, large field-of-view scans of the head are

acquired (3D gradient echo, TR = 2.2 ms, TE = 1.1 ms,

bandwidth = 1070 Hz/pixel, flip angles = 2- and 6-, field of

view = 320 mm, 2.5 mm isotropic resolution, 128 slices). By

collecting two volumes with different contrasts, we are able to

better separate tissue classes (gray matter, white matter, CSF)

than would be possible with only a single contrast. Information

relating tissue class to contrast is encoded in a pre-compiled

statistical atlas, built from segmented brain images. The 3D

localizer scans are registered using a rigid body alignment

procedure to the atlas, which represents the anatomical variation
tient position within the scanned volume to the statistical atlas and automatic
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within a population of 40 healthy adult subjects (21 males, 19

females). The result of the alignment is a matrix representing

the optimal registration of the subject to the atlas. This matrix is

then used to define the slice position and orientation of subsequent

scans during the same scanning session. A graphical representation

of the procedure is shown in Fig. 1.

Automatic alignment to probabilistic atlas

The alignment procedure relies on a pre-compiled probabilistic

atlas of aligned brain images. This atlas contains two types of

information viz. the probability of a given tissue type (e.g. gray

matter, white matter, CSF, skin, skull, eyes) occurring at a given

location in atlas space and the conditional probability distribution

of the multi-spectral MRI intensity values for a given tissue class.

The atlas-based alignment procedure seeks to find the most

probable alignment and tissue classification for the subject, given

localizer scans and atlas information. This approach scales well

with pathology, and the problem is highly overdetermined.

More formally, we seek to maximize the joint probability of an

atlas function f (r) and tissue classification C, given the observed

multi-spectral image I:

p C; f jIð Þ”p I jC; fð Þp Cj fð Þp fð Þ: ð1Þ
The atlas function f(r) maps atlas coordinates into the

corresponding points in the individual subject. The tissue

classification vector C specifies the tissue class for each voxel

location (see Fischl et al. (2002, 2004) for a more complete

description of this approach). The terms p(I)C, f) and p(C) f) in
Eq. (1) provide a natural means for incorporating atlas information

into the segmentation procedure. The first term encodes the

relationship between the class label at each atlas location and the

predicted image intensities. Using the atlas space, we can allow the

class statistics to vary as a function of location, allowing the

within-class variations in tissue properties that are known to exist

in the human brain (Cho et al., 1997; Steen et al., 2000) to be

captured in a natural manner. The second term allows the

expression of prior information regarding the spatial structure of

the anatomical classes. Finally, the term p( f ) provides a means for

constraining the space of allowable atlas functions (e.g. continuity,

differentiability, and invertibility).

Here, the atlas mapping function is assumed to be a rigid-body

transformation, i.e.

f rð Þ ¼ Mr ð2Þ

where

M ¼

cosucos/ þ sinusinhsin/ sinucosh � cosusinhsin/ coshsinu tx
� sinucosh cosucosh sinh ty

sinusinhcos/ � cosusinh � cosusinh � sinusinh coshcosu tz
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The transformation matrix M is parameterized by three trans-

lations (tx, ty, and tz) and three rotation angles (h, u, and /).

Furthermore, the a priori probability of all rigid body trans-

formations is assumed to be uniform (i.e., p( f) = const). We could

have put priors on M given knowledge of the subject positions but

did not do so as performance was satisfactory without this

additional information. Thus, assuming (1) that the multi-spectral

image intensities for a given tissue class c can be represented by a

multi-variate Gaussian distribution with mean lc and covariance

matrix �c, and (2) voxel-wise independence of the noise, the
optimal classification C and rigid-body registration matrix M is

given by

C;M ¼ arg minJC;M

¼ ~
i

I Mrið Þ � lcð ÞT��1
c I Mrið Þ � lcð Þ � log pc rið Þð Þ

� �
;

ð3Þ

where ri range over locations within brain in atlas space, c denotes

the tissue classification, and pc(ri) denotes the a priori probability

of tissue class c at location ri, where i is the index to a list of

locations within the brain in atlas space. Since we vary only the 6

rigid body parameters in the acquisitions aligned using the

calculated registration matrix, we solve only for these 6 parameters

in the optimization, that is, we do not scale head size to match the

atlas. This produces sufficiently accurate and more repeatable

results and requires less time to compute than a non-rigid

registration.

Compilation of statistical atlas

The statistical atlas for our implementation was compiled

from a database of 40 subjects scanned using a high-resolution,

multi-spectral protocol consisting of four separate scans (3D

GRE, TR = 20 ms, a = 3-, 5-, 20-, 30-, resolution = 1 mm

isotropic). Each subject’s scans were aligned and segmented

using the method described in Fischl et al. (2002), generalized

for multi-spectral acquisitions (Fischl et al., 2004). The class

statistics lc and covariance matrix �c and pc(r) were then

estimated for each tissue class based on these aligned and

segmented (or tissue classified) cases. Note that, whereas the

tissue class probability function pc(r) is strictly a function of

the subject population (i.e. independent of the scanner or scan

parameter used), the signal intensity mean lc and covariance

matrix �c depend on factors such as field strength, pulse

sequence, and scan parameters.

Generalization of the atlas from the high-resolution multi-

spectral protocol used to derive the class statistics to the fast,

medium-resolution acquisition used as a localizer for the automatic

alignment procedure was done by solving for ‘‘effective’’ tissue

parameters (T1 and proton density, q0) using the closed form

solution to the Bloch Equations for short TE, spoiled gradient echo

sequences (Haacke et al., 1999):

q a;TR; q0; T1ð Þ ¼ q0sina
1� e�TR=T1

1� e�TR=T1 cosa
: ð4Þ

The same equation was then used to predict the relative

image intensities for different tissue classes in the localizer

scan by substituting the appropriate sequence parameters (TR

and a).

Registration and offset matrices

In an imaging study, the goal is to perform an examination m

at a specified target location n, with the target position predefined

relative to an atlas (see Fig. 1). Let the registration matrix M of

Eq. (3) be denoted by MAAL
atlas (inverse of Matlas

AAL), the rigid body

transformation that maps the brain of the statistical atlas to the

subject’s brain in the automatic alignment localizer (AAL).

Subsequent routine clinical scans in the same session are aligned

using the positioning determined by the AAL. An additional



Fig. 2. Center slice of five medium resolution automatic alignment localizers of the same subject before (top line) and after (bottom line) automatic positioning.

The volumes were resampled offline. The algorithm aligns the brain itself and disregards non-rigid anatomy such as lower jaw and neck.
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fixed offset M target
atlas may be applied, so that the patient is scanned

at a predefined orientation relative to the atlas. The required

orientation of the clinical scan relative to the orientation of the

initial AAL is equal to the orientation of the target patient

position relative to the AAL. It is calculated as follows:

M
target
AAL ¼ M

target
atlas M atlas

AAL ð5Þ

Implementation

We have implemented a complete system following the work-

flow shown in Fig. 1 on the Siemens (Erlangen, Germany) 1.5 T

Sonata, 1.5 T Symphony Quantum, 3 T Allegra, and 3 T Trio
Fig. 3. Five axial images of the brains of five separate subjects, before automati

positioning (bottom row, MPRAGE). Corrections were performed on-line.
platforms, which incorporate different gradient coils and geom-

etry. The automatic alignment localizer consists of two volumes

with different flip angles in a single run of 42 s. The registration

matrix Matlas
AAL is calculated in 15 s (Intel Xeon, 1.8 GHz) and

saved to disk.

In our implementation, each subsequent (automatically posi-

tioned) sequence that uses the matrix has been modified to use the

automatic positioning matrix and to allow an offset relative to the

atlas to be saved as part of the protocol. The automatically

positioned sequences also have an additional feature – in-plane

rotation – that was not previously available by default on the

graphical user interface, that is, the technologist was unable to

rotate the slab within the predominant slice plane using the default

double-oblique positioning and therefore could not in principle
c positioning (top row, automatic alignment localizer) and with automatic



Fig. 4. Center slice of the same subject scanned with automatic positioning on Siemens Sonata (left), Symphony Quantum (center), and Trio (right) systems.
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manually align the slice prescription perfectly as the automatic

procedure is able to do.
Fig. 5. Axial TSE of patient with tumor. Top left: aligned manually by

technologist; top right: aligned automatically; bottom left: aligned manually

by technologist on return visit; bottom right: aligned automatically on

return visit. Note that the user interface did not allow the technologist to

adjust the rotation in the acquisition plane (axial), and the technologist was

therefore unable to correct the midline rotation errors reflected in the images

on the left without repositioning the patient. In contrast, the automatic

positioning algorithm was able to manipulate this parameter.
Results

We present results of automatic slice positioning with offsets

applied in two ways. In the first, the target positioning is selected on

a general atlas in order to scan all patients in a group with a

standardized orientation. This is applicable in routine clinical brain

imaging, cross-sectional research studies, and multi-subject longi-

tudinal studies. We call this ‘‘atlas-based positioning,’’ and setting

the offset on the atlas is called ‘‘atlas-based planning’’. The offset is

saved in a protocol specific to the study or type of examination. The

second type of application is that in which the target positioning

varies from patient to patient, depending on the specific pathology or

structure of interest, but in this case, the requirement is to scan the

same subject again during one or more follow-up sessions with

exactly the same slice positioning. This is important for longitudinal

studies of unique patients, and we call it ‘‘patient-based planning/

positioning’’. The offset is saved in a protocol specific to the patient.

Atlas-based planning

One approach to setting the target scan position would be to

specify it graphically on the atlas image. However, our current

implementation does not display the atlas, so planning (setting the

offset rotations and translations) is done on any individual example

subject and is then saved as part of the protocol. If this protocol is

run after localizing other subjects, the planned positioning will be

replicated in these subjects. Fig. 2 shows the middle slice of five

AALs collected on the same subject in various positions (top row).

The bottom row shows the middle slice of the same volumes

resampled to match the default position of the atlas using the

algorithm described earlier. The default atlas is positioned with the

anterior–posterior commissure (AC–PC) line tilted at approxi-

mately 12-. It should be noted, however, that our algorithm aligns

the brain and atlas globally and does not use landmarks such as the

commissures. Whereas two-point registration with AC–PC is

fundamental to Talairach registration and is used in stereotactic

neurosurgery (Verard et al., 1997; Weiss et al., 2004), inter-rater

reliability for detecting certain landmarks other than AC and PC

after global registration has been shown to be better and therefore

more appropriate in particular studies (Arndt et al., 1996; Johnson

and Christensen, 2002). Fig. 3 shows a single scan from each of

five different subjects before and after on-line prospective align-

ment with the default atlas. Again, notice good alignment to

midline and right– left symmetry in the aligned images. Also

visible is the close positioning of the slices from subject to subject.
Fig. 4 shows the images of one subject after automatic alignment in

Sonata, Symphony, and Trio scanners, respectively. Figs. 2–4

show that the brain as a whole is consistently aligned, while the

non-rigid anatomy such as the spinal cord varies across the aligned

images. In this report, we quantify only the performance of our

prototype 1.5 T Sonata implementation.

Our clinical protocol is planned with an offset that places AC–

PC approximately in the axial plane. The protocol includes

automatically positioned versions of standard clinical sequences

such as spin-echo, turbo spin-echo, gradient echo, FLAIR, and

diffusion sequences. Preliminary results of a study in patients with

brain tumors indicate that the consistency of automatic alignment is

significantly better than that of the technologist (Benner et al.,

2004). In the study, tumor patients were scanned with an axial TSE
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positioned by the technologist in the routine manner and aligned

using the automatic positioning procedure. Patients returned a few

weeks later for a repeat set of scans. Fig. 5 shows test– retest

positioning by the technologist on the left and automatic test–

retest positioning on the right for an example patient.
Fig. 6. Top: flow measurement planned on anatomical maximum intensity pro

automatically aligned without repeated planning (subject left patient table momen

measurements across cardiac cycle for each of three acquisitions (flow velocity i
Patient-based planning

Whereas atlas-based planning results in a single protocol that is

applied to all patients, patient-based planning results in a protocol

specific to an individual patient. This method may be applied to
jection; middle: phase images for each of three velocity measurements

tarily between scans, first image after planning is magnified); bottom: flow

n arbitrary units vs. uniform divisions in time across cardiac cycle).



Table 2

Intrasubject results for MPRAGE volumes

Translation [mm] Rotation [degrees] MSE MSE

x y z h u / (AA) (AA +

FLIRT)

0.87 �2.61 �0.62 0.40 0.61 0.27 88.44 60.91

3.24 �0.89 �2.04 �0.37 1.42 0.06 67.32 52.10

2.33 �1.68 �0.80 �0.78 0.35 �0.11 60.87 51.09

0.15 �0.07 0.27 0.11 �0.05 �0.07 47.85 37.95

�1.97 0.53 2.72 0.86 �0.51 0.49 62.00 38.59

3.37 �2.82 �0.60 �1.10 0.10 �0.13 63.36 50.42

�0.81 �0.06 0.49 0.07 �0.06 0.23 49.33 41.46

2.10 �0.14 �3.60 �0.79 0.36 �1.03 56.58 42.01

�3.13 4.26 �4.01 1.31 0.46 �0.80 61.56 42.20

�2.63 1.81 0.39 0.90 �0.53 �0.14 62.05 45.92

Individual translations and rotations between MPRAGE volumes collected

with automatic positioning, and compared using FLIRT, along with MSE

between volumes before and after registration with FLIRT. Mean square

errors (MSE) are listed for the automatically positioned MPRAGEs and for

the MPRAGEs resampled using the registration matrix generated by FLIRT.
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patients with specific localized pathologies, such as tumors. In both

atlas- and patient-based planning, alignment is calculated with

respect to the standard atlas, therefore no reference data need to be

stored for the patient.

The patient-based method has been applied to plan angio-

graphic scans of individual migraine subjects. In these patients, it is

critical to obtain blood flow measurements at short notice during

an acute event, and it is therefore useful to be able to plan the scan

in advance. The vessel of interest is identified in a maximum

intensity projection angiography image during a first visit. The

slice for through-plane velocity encoded imaging is positioned

perpendicular to the vessel as shown in Fig. 6 (top). A first velocity

encoded scan is performed using this positioning, and the phase

image is shown in Fig. 6 (middle) with the vessel marked. The

orientation of this slice relative to the atlas is saved in a patient-

specific protocol. Using this protocol, the subject can now be

rescanned on a later occasion without the need to reacquire the

anatomical volume or replan the positioning of the velocity

encoded scan. Fig. 6 (middle) shows the phase images acquired

with automatic positioning after having the subject leave and return

to the scanner twice. Fig. 6 (bottom) suggests that the flow

measurements are reproduced accurately by the automatically

positioned scans, without repeated planning.

Another application where patient-based planning may be

useful is in longitudinal spectroscopic studies of patients. In such

studies, it is important to place the volume over which the

spectrum is acquired in exactly the same part of the brain during

each follow-up visit. Even though the overall size of the brain

varies from subject to subject and the position of the pathology

varies from one subject to another, atlas-based automatic align-

ment is useful if the offset in positioning relative to the atlas is

saved separately for each subject.

Quantification of performance

We studied the test–retest performance of our implementation

of the automatic registration procedure in a set of ten healthy

volunteers. Each subject was scanned on two separate occasions

with both the automatic alignment localizer and a whole-brain

MPRAGE scan automatically positioned using the localizer. The
Table 1

Intrasubject results for automatic alignment localizers

Translation [mm] Rotation [degrees] MSE

(before AA)

MSE

(AA)x y z h u /

�0.14 �0.73 2.45 0.70 0.40 0.21 92.40 33.86

�0.60 0.01 �0.51 1.40 �0.34 0.40 74.00 31.73

�0.15 �0.25 0.25 0.34 �0.55 0.41 68.04 25.03

0.25 0.20 �0.05 �0.55 0.36 �1.25 71.65 22.29

�0.05 �0.25 0.20 �0.10 0.05 �0.30 60.61 14.47

0.20 �0.65 0.17 0.05 �1.00 0.15 69.52 24.98

0.10 0.56 0.55 �0.05 �0.50 �0.20 61.17 18.76

0.10 �0.40 0.40 0.08 �0.80 �1.00 60.14 19.59

0.10 0.41 0.69 0.05 0.55 0.10 65.20 19.04

0.20 �0.05 0.70 �0.15 0.05 0.10 64.85 21.63

Individual translations and rotations between automatic alignment localizers

used to position intrasubject MPRAGE volumes, compared using Matlab

image registration between T1-weighted (6-) volumes of localizers. Mean

square errors (MSE) are listed for the localizers as acquired and after

resampling to the automatically determined alignment (residual error

reflects non-rigid anatomy).
individual results are shown in Tables 1 and 2, and the performance

is summarized in Table 3.

Since the residual errors for the MPRAGE include errors due to

post-localizer motion of the subject, we first tested the algorithm

directly by comparing the localizer volumes. We resampled the

localizers using the rotation and positioning determined by the

automatic alignment algorithm (to match the orientation of the

MPRAGE scans). FLIRT (Jenkinson and Smith, 2001) did not

perform well on these volumes, possibly because of the lower

resolution and low contrast of the volumes, so we applied our own

matching algorithm (distinct from the automatic positioning

algorithm) implemented using Matlab (The MathWorks, Natick,

Massachusetts) that does a simple fit between the intensities of the

two high flip angle (T1-weighted) volumes, embedded in a

multiscale search that finds the residual difference in orientation

that results in the minimum mean square error in intensities

between the two volumes. Individual results are listed in Table 1.

The minimum, maximum, and mean square residual errors in the

translations and rotations for the localizer pairs and MPRAGE

pairs are listed in Table 3.

In principle, the pairs of MPRAGE volumes for the same

subject scanned during two separate sessions should be aligned

precisely except for the distortions due to gradient non-

linearities and B0 inhomogeneities. To gauge the error on the
Table 3

Summary of intrasubject (test– retest) results for ten subjects

Translation [mm] Rotation [degrees]

x y z h u /

AAL min. �0.60 �0.73 �0.51 �0.55 �1.00 �1.25

max. 0.25 0.56 2.45 1.40 0.55 0.41

m.s. 0.24 0.42 0.89 0.54 0.54 0.56

MPRAGE min. �3.13 �2.82 �4.01 �1.10 �0.53 �1.03

max. 3.37 4.26 2.72 1.31 1.42 0.49

m.s. 2.32 2.00 2.06 0.78 0.58 0.46

Residual differences (minimum, maximum, mean square) in translations

and rotations of resampled automatic alignment localizer (AAL) and

automatically positioned MPRAGE. These results reflect not only

inaccuracies in the automatic alignment, but also errors in the offline

registration algorithms.



Table 4

Summary of intersubject results for two groups of ten subjects

Translation [mm] Rotation [degrees]

x y z h u /

MPRAGE (manual) min. �47.48 �51.85 �12.46 �23.81 �3.33 �3.92

max. 59.14 98.08 18.53 30.88 3.33 5.39

m.s. 28.73 33.18 6.11 12.02 1.51 2.15

MPRAGE (automatic) min. �20.47 �16.51 �6.20 �7.73 �1.63 �2.05

max. 27.91 8.46 2.87 3.88 1.97 1.31

m.s. 9.00 6.58 2.28 2.50 0.71 0.81

P value 0.0503 <0.0001 0.0019 0.0032 0.1075 0.6605

Comparison of each subject with all others in groups of ten (45 comparisons) using FLIRT for manually positioned vs. automatically positioned subjects.

Shown are minimum, maximum, and mean square of translations and rotations. Some residual error are due to FLIRT attempting to register non-rigid parts of

the anatomy.
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MPRAGE, we used FLIRT to register the already automatically

aligned volumes. To test the null hypothesis that registration

using FLIRT does not further improve registration over what

automatic positioning achieves, we calculated the MSE between

the two automatically positioned volumes, and the MSE

between these volumes resampled using FLIRT’s alignment. A

paired t test comparing these sets yields a P value of smaller

than 0.001, and we thus conclude that FLIRT further improves

the registration calculated by the automatic positioning algo-

rithm. There are two sources of inaccuracy in the automatic

positioning of the MPRAGE. The first is inaccuracies in the

automatic positioning algorithm. The second is subject motion

after the localizer but before or during the long (8 min)

MPRAGE scan. Motion during the automatic alignment local-

izer will also affect the quality of the alignment, although this

scan is only 42 s long. Whereas automatic registration uses the

two volumes of the localizer to distinguish brain from non-rigid

tissue, FLIRT has only the intensity values in the MPRAGE to

use for matching. To decrease the bias introduced when FLIRT

tries to align non-rigid tissue (e.g. lower jaw, tongue, neck), we

mask the brains with a spherical mask during registration. We

also calculate the MSE in the masked region only.

Another important aspect of the automatic positioning

algorithm is its ability to align the brains of different subjects

with one another. We scanned ten subjects with automatically

positioned whole-brain MPRAGEs and ten different subjects

with manually prescribed MPRAGEs. We used FLIRT to detect

the residual translation and rotation errors between each

combination of pairs of scans within the ten-subject pool (45

combinations). Table 4 shows the minimum, maximum, and

mean square translation and rotation differences for the

manually prescribed and automatically positioned MPRAGEs,

respectively. These results may also reflect inaccuracies in our

application of the FLIRT algorithm, in particular because FLIRT

attempts to register the non-rigid anatomy in the head. In this

case, spherical masking is complicated by the fact that the

brains are not necessarily centered in the middle of the volume,

so we did not apply any mask.

To test whether automatic alignment reduces the variability of

alignment achieved by manual positioning, we use the F test to

compare the variances on the rotations and translations of the

manual vs. automatically positioned MPRAGEs. The resulting P

values for all translation directions and rotation axes are listed in

Table 4. The much better performance in rotation about the x axis

(left–right) may be accounted for by the fact that this axis is
perpendicular to the scanning plane (sagittal) and the user interface

does not allow manual setting of rotations about this axis (in-plane

rotation), whereas the automatic method is able to set arbitrary in-

plane rotations. If we use Fisher’s method to combine the P values

(Snedecor and Cochran, 1989), we conclude that the variance of

the overall test–retest is improved by automatic positioning (P <

0.001), despite the bias against automatic positioning introduced

because FLIRT attempts to align non-rigid anatomy.
Discussion

Our results indicate that automatic alignment significantly

improves the consistency of inter-subject positioning and suggest

that it improves test– retest consistency in positioning with follow-

up scans of the same subject. The procedure is currently being used

in several research studies at our hospital and elsewhere.

Because changes in the subject’s position subsequent to the

localizer will introduce errors in the positioning of later scans,

we are developing an automated correction procedure that will

ensure consistent alignment between volumes acquired in the

same session, using a short reference scan collected immediately

after the initial automatic alignment localizer. Motion correction

schemes using embedded navigators for tracking and correcting

for motion within long high resolution anatomical scans have

been suggested (Van der Kouwe and Dale, 2004; Ward et al.,

2000; Welch et al., 2002). In future work, we therefore hope to

address consistency in positioning between and within the scans

of a single automatically positioned session. Welch et al. (2002,

2004) have developed a technique for interscan registration

using rapidly acquired spherical navigators. Their technique may

also be used to align scans between sessions, but in this case, a

reference needs to be stored for each individual subject. In

principle, the alignment should be more accurate if the reference

is specific to the individual rather than an average atlas.

However, the advantage of using an atlas is that reproducible

prescriptions can always be performed, even in cases when a

subject-specific reference is not available, including at a

different scanner at another location or at a scanner of a

different type.

The choice and number of example brains used to build our

atlas limits our implementation. In particular, young children’s

brains and brains with resected anatomy are more challenging to

the algorithm and result in poorer alignment. In this case, a

modified atlas would be needed for automatic alignment, or a
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technique using an individual reference would have to be used

to register between sessions. The same is true for other body

parts such as the knee or heart, although in these cases the non-

rigid nature of the anatomy represents a further challenge.

We expect that the use of automatic prospective scan position-

ing will result in more consistent clinical scanning, not only within

a site, but also between scanners and between sites. We also expect

that automatic positioning will contribute to improved care in

patients where follow-up scans are necessary to monitor progress

in response to treatment. Automatic positioning has already

contributed to consistent scanning in several longitudinal studies

at our institution.
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