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Abstract
We present a novel framework to exert topology control over a level set evolution. Level set methods
offer several advantages over parametric active contours, in particular automated topological changes.
In some applications, where some a priori knowledge of the target topology is available, topological
changes may not be desirable. This is typically the case in biomedical image segmentation, where the
topology of the target shape is prescribed by anatomical knowledge. However, topologically constrained
evolutions often generate topological barriers that lead to large geometric inconsistencies. We introduce
a topologically controlled level set framework that greatly alleviates this problem. Unlike existing work,
our method allows connected components to merge, split or vanish under some specific conditions that
ensure that the genus of the initial active countour (i.e. its number of handles) is preserved. We demon-
strate the strength of our method on a wide range of numerical experiments and illustrate its performance
on the segmentation of cortical surfaces and blood vessels.

1. Introduction
Active contours constitute a general technique of matching a deformable model onto an image by means
of energy minimization. Curves, surfaces, or higher-dimensional geometric object, deform within an
input image subject to both internal and external forces and external constraints. Since their introduction
by Kass et al. in [20], active contours have benefited many computer vision research areas, such as
image segmentation [5, 6, 7, 13, 23, 35], region tracking [25, 27], shape from stereo [9, 10, 14, 19, 28],
shape from shading [12, 36], shape from point clouds [2, 34, 37], among others.

Geometric active contours, which represents the manifold of interest as level sets of functions defined
on higher-dimensional manifolds [5, 26], offer many advantages over parametric approaches. In addition
to their ease of implementation, level sets do not require any parameterization of the evolving contour.
Self-intersections, which are costly to prevent in parametric deformable models, are naturally avoided
and topological changes are automated. Also, the geometric properties of the contour, such as the normal
or the curvature, are easily computed from the level set function. We refer the interested reader to the
dissertation of Pons for an in-depth discussion of these concepts [29].

The ability to automatically change topology is often presented as an advantage of the level set method
over explicit deformable models. However, this behavior is not desirable in some applications. This is
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typically the case in biomedical image segmentation, where the topology of the target shape is prescribed
by anatomical knowledge. In order to overcome this problem, a topology-preserving variant of the level
set method has been proposed by Han, Xu, and Prince in [17]. The level set function is iteratively
updated with a modified procedure based on the concept of simple point from digital topology [3]; the
final mesh is obtained with a modified topology-consistent marching cubes algorithm. This method
ensures that the resulting mesh has the same topology as the user-defined initial level set.

While such topological preservation is desired in some applications, it is often too restrictive. Because
the different components of the contour are not allowed to merge or to split up, the number of connected
components will remain constant throughout the evolution. This number must be known by the user a
priori and the initial contour must be designed accordingly. Also, the sensitivity to initial conditions,
which already limits the applicability and efficiency of active contour methods, is considerably increased.
The initial contour must both have the same topology as the target shape and be close enough to the final
configuration, otherwise the evolution is likely to be trapped in topological dead-ends including large
geometric inconsistencies (cf Fig. 2-b, Fig. 3-b, and Fig. 7-a).

Although being able to control the topology of an active contour is an attractive feature, forcing it to
remain identical through an evolution is a strong constraint. In this paper, we propose a method to exert a
more subtle topological control on a level set evolution. Some a priori knowledge of the target topology
can be integrated without requiring that the topology be known exactly. Our method greatly alleviates
the sensitivity to initial conditions by allowing connected components to merge, split or vanish without
changing the genus of the active contour, i.e. its number of handles. For example, an initial contour
with a spherical topology may split into several pieces, go through one or several mergings, and finally
produce a certain number of contours, all of which are topologically equivalent to a sphere. A subset of
these components may then be selected by the user as the desired output (typically the largest component
if one spherical contour is needed, the others being caused by noise).

Our approach is based on an extension of the concept of simple point to “multi-label” images, that we
have called multisimple point [32]. This criterion ensures that no handles are generated or suppressed
while splitting or merging the components of the object. The resulting algorithm fills the gap between the
original level set framework and topology-preserving level set methods. We demonstrate the strength of
our method on a wide range of numerical experiments and illustrate its performance on the segmentation
of cortical surfaces and blood vessels. Part of this work was presented at a workshop of the International
Conference on Computer Vision [31].

2. Background
2.1. Topology
Topology is a branch of mathematics that studies the properties of geometric figures that are preserved
through deformations, twistings and stretchings, hence without regard to size, absolute position.

In this work, we focus on compact surfaces in three dimensions. Any compact connected orientable
surface is homeomorphic to a sphere with some number of handles [8]. This number of handles is a
topological invariant called the genus. For example, a sphere is of genus 0 and a torus is of genus 1.
The genus g is directly related to another topological invariant called the Euler characteristic χ by the
formula χ = 2 − 2g. The Euler characteristic is of great practical interest because it can be calculated
from any polyhedral decomposition of the surface by χ = V − E + F , where V , E and F denote
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respectively the number of vertices, edges and faces of the polyhedron1.
Homeomorphisms are used to define the intrinsic topology of an object, independently of the embed-

ding space. For example, a knotted solid torus has the same genus as a simple torus, or a hollow sphere
as two spheres. In order to topologically differentiate these surfaces, one needs a theory that considers
the embedding space. Homotopy, which defines two surfaces to be homotopic if one can be continuously
transformed into the other, is such a theory that provides a measure of an object’s topology (see [18] for
an excellent course in algebraic topology).

2.2. Digital topology
Digital topology provides an elegant framework, which transposes the continuous concepts of topology
to discrete images. In this theory, binary images inherit a precise topological meaning. In particular, the
concept of homotopic deformation, necessary to assign a topological type to a digital object, is clearly
defined through the notion of simple point. An extensive discussion of these concepts can be found in
the work of Mangin et al [24]. In this section, some basic notions of digital topology are presented. All
definitions are taken from the work of G. Bertrand, which we refer to for more details [3].

A 3D binary digital image I is composed of a foreground object X and its inverse, the complement
X . We first need the concept of connectivity, which specifies the condition of adjacency that two points
must fulfill to be regarded as connected. Three types of connectivity are commonly used in 3D: 6-, 18-
and 26-connectivity. Two voxels are 6-adjacent if they share a face, 18-adjacent if they share at least an
edge and 26-adjacent if they share at least a corner. In order to avoid topological paradoxes, different
connectivities, n and n, must be used for X and X . This leaves us with four pairs of compatible con-
nectivities, (6,26), (6,18), (18,6) and (26,6). We note that digital topology does not provide a consistent
framework for multi-label images, since no compatible connectivities could be chosen for neighboring
components of the same object. Digital topology is strictly limited to binary images.

We then go to the definition of a simple point. This concept is central to the method of [17] and
to our method. A point of a binary object is simple if it can be added or removed without changing
the topology of both the object and its background, i.e. without changing the number of connected
components, cavities and handles of both X and X . A simple point is easily characterized by two
topological numbers with respect to the digital object X and a consistent connectivity pair (n, n). These
numbers, denoted Tn(x,X) and Tn(x,X) (or Tn and Tn when no confusion is possible), have been
introduced by G. Bertrand in [3] as an elegant way to classify the topology type of a given voxel. The
values of Tn(x,X) and Tn(x,X) characterize isolated, interior and border points as well as different
kinds of junctions. In particular, a point is simple if and only if Tn(x,X) = Tn(x,X) = 1. Their
efficient computation, which only involves the 26-neighborhood, is described in [4].

2.3. Topology preserving level sets
The level set method models the evolution of an active contour Γ : t ∈ R+ → Γ(t), where Γ(t) is
a closed and embedded hypersurface in Rn, by the level set of a function defined on Rn. Although
many functions could be chosen to represent the active contour Γ, the signed distance function is usually
preferred for its stability in numerical computations. The moving contour Γ is represented by a level set

1In the case of multiple surfaces involving K connected components, the total genus is related to the total Euler-
characteristic by the formula: χ = 2(K − g).
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function φ : Rn × R+ → R such that:
φ(x, t) < 0 if x is inside Γ(t)
φ(x, t) = 0 if x ∈ Γ(t)
φ(x, t) > 0 if x is outside Γ(t)

A deformation of Γ under the velocity field v:

∂Γ(x, t)

∂t
= v(x, t)

corresponds to the level set formulation:

∂φ(x, t)

∂t
+ v(x, t).∇φ(x, t) = 0.

The ability to automatically handle topology changes is a long-acknowledged advantage of the level
set method over explicit deformable models, but may not be desirable in some applications where some
prior knowledge of the target topology is available. Han et al. [17] have used the concept of simple
point to design a topology-preserving variant of the level set framework. The binary object of interest
is the interior of the contour, i.e. the domain where the level set function Φ is strictly negative: X =
{x ∈ I | Φ(x) < 0}. The digital topology of X is preserved during the evolution by the means
of a modified update procedure detailed in Algorithm 1, below. This approach prevents digital non-
simple grid points from changing sign, therefore retaining the initial digital topology throughout the
level set evolution. Briefly, every time a point x is about to change sign, the simple point condition
(i.e. Tn(x,X) = Tn(x,X) = 1) is verified: if the point is simple, the new value is accepted; in the
other situation, a small value of the same sign as the current value is set, thereby preserving the digital
topology of the binary object.

Algorithm 1 Topology-preserving level sets. Han et al. [17]
for all iterations do

for all grid points do
Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
else

Discard the new value
Set instead a small value of the adequate sign

For this method to be useful, it must be complemented with a topology-consistent isocontour extrac-
tion algorithm. Standard marching squares or marching cubes algorithm [22] do not generate topolog-
ically consistent tessellations. In order to alleviate this problem, Han et al. have designed a modified
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connectivity-consistent marching contour algorithm, by building a specialized case table for each type of
digital topology. Using the topology-preserving level set algorithm and the topology-consistent march-
ing contour algorithm in conjunction, with the same digital topology (n, n) throughout the process,
guarantees that the output mesh is topologically equivalent to the user-defined initial level set.

3 Methods
The simple point condition is a very efficient way to detect topological changes during a level set evo-
lution. However, in many applications, the topology-preserving level set method of Han et al. is too
restrictive.

The primary concern is topological defects such as handles, which are difficult to retrospectively
correct [16, 11, 15, 21, 30, 33]. On the other hand, changes in the number of connected components
(including cavities) during the evolution are less problematic. Different connected components are easily
identified using standard region growing algorithms. A subset of them may be selected by the user as the
final output, typically the largest one if a single component is needed, the others being imputable to noise
in the input data. Unexpected cavities, which can be interpreted as background n-connected components,
might generate large geometrical inaccuracies in level set evolutions that prevent their formation. This
might be of particular importance when dealing with noisy data or in medical imaging, when unexpected
medical structures, such as tumors, might exist in the volume to be segmented.

We extend the concept of simple point to allow distinct connected components to merge, split, appear,
or disappear, while ensuring that no additional handle is generated in the object. For example, an initial
contour with spherical topology may split into several pieces, generate cavities, go through one or several
mergings, and finally produce a specific number of surfaces, all of which are topologically equivalent to
a sphere.

3.1 From simple points to multisimple points
The different values of Tn and Tn characterize the topology type of a given point x, providing important
information with regards to its connectivity to the object X . In particular, isolated points are character-
ized by Tn = 0 and Tn = 1, interior points by Tn = 1 and Tn = 0, different junctions by Tn > 1
and Tn = 1, etc. This additional information can be used to carefully design a multi-label digital frame-
work, which allows different connected components to split, merge or vanish under topology control.

Definition: We say that a point is multisimple if it can be added or removed without changing the
number of handles of the digital objects X and X .

Contrary to the case of simple points, the addition of a multisimple point may merge several connected
components, and its removal may split a component into several parts. We note Cn(x,X) the set of n-
connected components of X \ {x} that are n-adjacent to x. If the cardinality of this set |Cn(x,X)| is
strictly greater than one, the addition or removal of x involves a merge or a split respectively. By duality,
the generation of one or several cavities in X can be interpreted as a split of connected components of
X . In [32], we introduced two extended topological numbers T+

n (x, X) = |Cn(x,X)| and T+
n (x, X) =

|Cn(x,X)|, which used in conjunction with the topological numbers Tn and Tn provide an elementary
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characterization of multisimple points.
Characterization of multisimple points

A point is said to be multisimple if and only if:
{
T+

n (x,X) = Tn(x,X)
T+

n (x,X) = Tn(x,X)
. (1)

When merging or splitting connected components by adding or removing a multisimple point, the total
genus (i.e. the total number of handles) of the different components is preserved. We note that, under
this condition, isolated and interior points are multisimple points, which allows components to appear
or disappear. In addition, the above criterion can be easily modified to allow more specific topological
changes, such as preventing the formation of cavities or the generation of disconnected components
during the evolution. For instance, no cavities will appear or disappear when T+

n (x,X) = Tn(x,X)
and Tn(x,X) = 1; no components will split or merge when Tn(x,X) = 1 and T+

n (x,X) = Tn(x,X).
Figure 1 illustrates on a simple example the concept of multisimple point.

Figure 1: a-b) Addition of a multisimple point (T+
n = Tn = 2 and Tn = 1). b-c) Deletion of a non-multisimple

point (T+
n = 1 6= Tn = 2 and Tn = 1). The deletion of the circled voxel suppress a handle in the digital volume.

3.2 Level set evolution under topology control
With the concept of multisimple point in hand, we are now ready to describe our new level set frame-
work. Similarly to the approach of Han et al. [17], we exploit the binary nature of the level set function
Φ that partitions the underlying digital image into strictly negative inside points and positive outside
points. During the evolution, we maintain a map L of labels coding for the different connected com-
ponents of X = {x ∈ I | Φ(x) < 0} and X = {x ∈ I | Φ(x) ≤ 0}. Each n-connected component
of X is represented by a set of n-connected negative points, and is assigned a specific label in the label
map L. Similarly, n-connected components of X constitute sets of n-connected positive points, and are
assigned distinct labels in L. The label map L is updated concurrently with the level set function φ. For
clarity, we first explain the main concepts. The update procedure for each grid point at each iteration is
described in Alg. 2.

During the evolution, only voxels whose levelset value is about to change sign could modify the
topology of the active contour. For those, the simple point condition, more restrictive, is checked first,
because it is computationally cheaper. If the point is non-simple, then T+

n (x, X) and T+
n (x, X) are

computed in order to check the multisimple criterion. Two comments follow:
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Algorithm 2 Update Scheme for the Evolution of Level Sets Under Topology Control
Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
if negative new value then
L(x)← the only foreground label n-adjacent to x

else
L(x)← the only background label n-adjacent to x

else {non-simple point}
Compute the extended topological numbers T+

n (x, X) and T+
n (x, X)

if the point is multisimple {T+
n = Tn and T+

n = Tn} then
if negative new value then

if Tn > 1 then
Split the n-component of Cn(x, X)

if Tn > 1 then
Merge the n-component that x belongs to

L(x)← the only label n-adjacent to x
else {positive new value}

if Tn > 1 then
Merge the n-components of Cn(x, X)

if Tn > 1 then
Split the n-component that x belongs to

L(x)← the only label n-adjacent to x
else {non-multisimple point}

Discard the new value
Set instead a small value of the adequate sign

• If x is part of the background object X and is a candidate for addition in X , T+
n (x, X) can be

deduced directly from the map L. In this case, Cn(x, X) corresponds to the set of n-connected
components of X whose label in the map L is n-adjacent to x. Therefore, T+

n (x, X) is simply
the number of distinct labels in L for points in X that are n-adjacent to x. By duality, the same
comment apply when x is part of the foreground object X and is a candidate for addition in X: in
this situation T+

n (x, X) can be deduced directly from the map L.

• On the other hand, when x is a candidate for removal in X , the complete set Cn(x, X) must be
computed. In the most general case, this step is computationally expensive and standard region
growing algorithms must be used to identify these components. However, when all the initial
components have a spherical topology (i.e. do not possess any handles), which is the most common
situation in practice, the computation of T+

n (x, X) involves local computations only: since the n-
connected component of x has a spherical topology, the condition T+

n (x, X) = Tn(x, X) is always
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verified. This implies that the first condition for multisimple point is always verified when all the
initial components have a spherical topology (see Eq. 1). Obviously, the same condition applies
when x is a candidate for removal in X .

Some care must be taken in order to ensure that the map of labels L is correctly updated. The more
complex case is the removal of a multisimple point involving a split. In this case, some unused labels
must be assigned to the new connected components. Algorithm 2 describes in detail the update pro-
cedure for the label map. Note that new components can only be generated through the splitting of an
already existing component, as level set evolutions do not allow the spontaneous generation of new dis-
connected fronts.

The resulting procedure is an efficient level set method that prevents handles from being created during
the evolution, allowing the number of connected components (including cavities) to vary. We insist on
the fact that digital topology does not provide a consistent framework for multi-label images. However,
by ensuring that no components of the same object X or X are adjacent, topological inconsistencies are
avoided.

3.3 Implementation Issues
The implementation of the level set method is computationally expensive. In order to increase the
computational speed of geometric deformable models, a narrow band method is usually adopted [1].
Only the grid points that are in a small neighborhood of the active contour are updated. During the
evolution, most points of the narrow-band do not change sign and do not imply a potential change of
topology. The simple point condition, which only involves local calculations, is computationally cheap
and leads to an efficient algorithm (see [4, 17]). Similarly, when the initial level set components do not
possess any handles, multisimple points, which constitute a direct extension of the concept of simple
points, only require local computations. This situation is the most common in practice, since one is most
often interested in segmenting structures that have a spherical topology.

The merging of connected components into one single component can easily be done using the label
map L. If a point x is part of the background object and is a candidate for addition, Cn(x, X) can be
deduced directly from the label map and the voxels directly adjacent to x. The merging step simply
amounts to assigning the same label to each neighboring connected components.

One must be more careful when splitting components (i.e. split of a foreground component into sev-
eral components or generation of cavities). During the evolution, some components may need to be
split into several components, which requires the assignment of some unused labels to the new con-
nected components that must be previously identified. This can be done efficiently using standard region
growing algorithms.

3.4 Variations on Topologically-Controlled Level Sets
The proposed framework can be modified to allow more specific topological control during the level
set evolution. The multisimple condition introduced in Sect 3.1 can be used to distinguish different
topological changes. The splitting of a foreground component or the merging of several foreground
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components correspond to the condition:{
T+

n (x, X) = Tn(x, X)
Tn(x, X) = 1

, (2)

while the generation of a cavity or the merging of several background components are characterized by:{
Tn(x, X) = 1
T+

n (x, X) = Tn(x, X)
. (3)

We note that the condition Tn = 1 implies T+
n = 1, which proves that the previous criteria characterize

multisimple points.
Using these specific criteria, one can design more elaborate level set frameworks that allow some

specific topological changes only. For instance, using the criterion 2, one can design a level set evolution
that allow foreground components to split or merge only. On the other hand, cavities can be controlled
using the criterion 3. Finally, note that the three criteria allows the user to control exactly the different
topological changes applied to the digital object.

4 Experiments and Applications
In this section, we demonstrate the interest of using the genus-preserving level set method for image
segmentation. We present some experiments illustrating the performance of our approach and introduce
some potential applications. We first apply our level set framework to two synthetic examples to demon-
strate its ability to handle disconnected components and cavities. Next, two real data segmentation tasks
are presented: the generation of cortical surfaces from MRI images and the extraction of blood vessels
from MRA images.

Our segmentation framework is simplistic. The deformation of the active contour Γ is driven by a
velocity field that is a combination of an intensity-based term, (I − Ithres), and a mean curvature term,
H:

∂Γ(x, t)

∂t
= v(x, t) with v(x, t) = [α(I(x)− Ithres)−H(x, t)]n(x, t),

where I denotes the scalar image to be segmented, Ithres is a suitable intensity threshold, which separates
the object from the background, n(x, t) is the outward normal to the isosurface of the actice contour at
location x, and α is a weighting parameter. The corresponding level set evolution equation is:

∂φ(x, t)

∂t
= [−α(I − Ithres) +

1

n− 1
div(

∇φ
|∇φ|

)] |∇φ|.

More complex images would require more elaborate segmentation frameworks. However, the choice
of a particular segmentation method is not the issue here. We rather focus on the improvements brought
by our approach, as regards to the management of the topology, relative to the standard level set method
and to the topology-preserving method of [17].
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4.1 Synthetic data
Experiment 1: Segmentation of a ‘C’ shape

First, we consider the segmentation of a simple ‘C’ shape under two different initializations (Fig. 2
and Fig. 3). Our method, columns c, is compared to the original level set formulation, columns a, and
the topology-preserving model introduced by Han et al. [17], columns b. The differences of behavior
are circled in the images. Two different initializations (a little sphere in Fig. 2 and a larger box in Fig. 3)
were used to test the sensitivity of each method to initial conditions.

Figure 2: Segmentation of a ‘C’ shape using a spherical initialization. The top row shows cuts of the 3D shape
locating the initial contour. a) Traditional level sets. b) Topology-preserving level sets. c) Genus-preserving level
sets. Differences of behavior are circled in the images. In this case, our method behaves exactly like the standard
level set method. Topology-preserving level sets are trapped in a deadlock.

In these simple examples, both standard level sets and genus-preserving level sets yield the expected
result. With the first initialization (Fig. 2-a,c) the two methods behave in exactly the same way, be-
cause no handle is generated during the evolution. During the evolution, three distinct components are
generated, one of which vanishes, while the two other components merge, closing the ‘C’ shape. With
the second initialization (Fig. 3-a,c) they behave differently. Standard level sets temporarily generate a
toroı̈dal topology (row 3, column a), whereas our method prevents the formation of the handle (row 3,
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Figure 3: Segmentation of a ‘C’ shape using a rectangular initialization. The top row shows cuts of the 3D shape
locating the initial component. a) Traditional level sets. b) Topology-preserving level sets. c) Genus-preserving
level sets. Differences of behavior are circled in the images. Our method is able to achieve a correct segmentation
without generating a toroı̈dal topology during the evolution.

column c) by delaying a merging until a split in another part of the object occurs.
In contrast, topology-preserving level sets yield poor results. For the two different initializations, they

get trapped in a topological deadlock. Although the final surface has the correct topology, it has large
geometric errors (row 4, column b): a filament linking the two ends of the ‘C’ and a separating membrane
at the middle of the ‘C’. These topological barriers, generated during the evolution, are difficult to correct
retrospectively.

The behavior of our approach corresponds to a trade-off between standard level sets and topology-
preserving level sets. Compared to the former, the formation or closing of handles is prevented. Com-
pared to the latter, the ability to change topology under certain condition greatly alleviates the sensitivity
to initial conditions.

Experiment 2: Formation of cavities

The second experiment, shown in Fig.4, illustrates the ability of our approach to generate cavities
during the evolution. The object to be segmented is a synthetic cube, containing 3 large cavities. 10 seed
points, randomly selected inside and outside the volume, were used to initialize the level set evolution
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reported in Fig.4. During the evolution, components merge, vanish and produce cavities, generating a
final accurate representation constituted of 3 spherical cavities and the main object. We note that all the
components are easily extracted, since they carry distinct labels that are iteratively updated during the
evolution.

Figure 4: Segmentation of a cube containing 3 cavities. 10 initial seed points were randomly selected. Note how
components split, merge and disappear during the evolution, and how the active contour encloses cavities.

4.2 Real data
Two segmentation tasks are presented that illustrate the potential benefits of our novel level set frame-
work : the segmentation of cortical surfaces from MRI and the extraction of blood vessels from MRA
data sets.

Experiment 3: Cortical segmentation

Excluding pathological cases, the cortex, which corresponds to a highly-folded thin sheet of gray
matter, has the topology of a sphere. The extraction of accurate and topologically-correct cortical repre-
sentations is still an active research area. In this example, the cortical surface is initialized with 55 spher-
ical components, automatically selected in a greedy manner, such that every selected point is located at
a minimal distance of 10mm from the previous ones (Fig.5). Topology-preserving level sets could not
handle such an initialization, since the number of components would remain constant throughout the
evolution. As a consequence, only one initial seed could be used, leading to a slower segmentation
process and potentially to topological deadlocks. Standard level sets yield a final cortical surface with
18 handles. On the other hand, using our method, the components progressively merge together and
enclose cavities, resulting in a final surface composed of 6 spherical components: the cortical surface
and 5 small cavities.

Experiment 4: Segmentation of blood vessels

Finally, we show how our method could be applied to the segmentation of blood vessels from Mag-
netic Resonance Angiography. Because these vessels do not split and merge, their topology is the one of
several distinct components with no handles (i.e. each component has the topology of a sphere). While
traditional level sets produce segmentations that could include topological defects, topologically con-
strained level sets would result in a slow and laborious segmentation. Since the simultaneous evolution
of several components, which cannot be merged together, can easily be trapped in topological dead-
ends, each component would need to be iteratively initialized, when the evolution of the previous one
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Figure 5: Segmentation of the cortex from an anatomical MRI. The initial level set was constituted of 55 con-
nected components. The final surface has a spherical topology, corresponding to an Euler number of 2. The same
level set evolution without topological control results in a final surface with 18 topological defects (Euler number
of χ = −34)

.

has terminated. Moreover, when using an initialization with a bounding box, topology-preserving level
sets yield a final surface with many geometrical inconsistencies due to topological barriers, displayed in
Fig. 7.

Figure 6: Segmentations of blood vessels in a 3D angiography under two different initializations. Top row: 20
seed points were selected to initialize the active contour, which generates 3 components. Bottom row: An enclos-
ing contour is used to initialize the level set. After 9 merges and 99 splits, the final segmentation is constituted of
91 components, 53 of which were due to random noise.

On the other hand, our method offers the possibility to concurrently evolve multiple components that
can merge, split and vanish. The initial contour can be initialized by a set of seed points, manually or au-
tomatically selected, or by a single enclosing component, without affecting much the final representation.

Figure 6 shows the segmentation of an angiography under two different initializations. In a first exper-
iment (top row), 20 seed points were automatically selected at the brightest locations in the MRA. The
level set evolution iteratively merged most of the components, generating a final segmentation with 3
spherical components. In the second experiment (bottom row), one single global component, enclosing
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Figure 7: Segmentations of blood vessels from MRA produced by a) a topologically constrained evolution [17],
starting from a bounding box b) our genus-preserving level set framework. The image contains several artifacts,
which are mostly due to noise. As a consequence, several disconnected components are present in the final segmen-
tation produced by our method. Topologically constrained segmentation fails to segment out these disconnected
components and produce an incorrect segmentation.

most of the object of interest, was used to initialize the active contour. During the evolution, 9 com-
ponents merged and 99 split producing a final segmentation composed of 91 components, 53 of which
were single voxel components due to random noise in the imaging process.

5 Conclusion
We introduced a new level set framework that offers control over the topology of the level set compo-
nents during the evolution. Contrary to previous approaches that either do not constrain the topology
or enforce a hard topological constraint, our method exerts a subtle control over the topology of each
component to prevent the formation of topological defects, such as handles (or cavities depending on the
application and the choice of active contour model). Distinct components can merge, split or disappear
during the evolution, but no handles are generated. In particular, a contour composed solely of spherical
components will only produce spherical components throughout the evolution. In this case, the most
common situation in practice, all computations are local and the multisimple point checking can be done
efficiently. The only computational complexity comes from the generation of new components, as new
labels need to be assigned to each.

While the original level set model does not provide any topological control, topology-preserving level
sets impose too restrictive of a constraint. Our framework establishes a trade-off in between the two
models. Compared to the former, the formation of new handles and the closing of existing handles
are prevented. Compared to the latter, the ability to change topology under certain conditions greatly
alleviates the sensitivity to initial conditions. Our framework offers a subtle topological control that
alleviates most problems of topologically-constrained methods (i.e. sensitivity to initialization and noise,
simultaneous evolution of multiple components and speed of convergence). The experiments presented
in this paper illustrate some applications that could potentially benefit from our approach.

Finally, we also note that the proposed framework can be adapted to allow different levels of topolog-
ical control during the level set evolution. Particularly, the two criteria 2 and 3 can be used to distinguish
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different types of voxels, such as the ones leading to a split or a merge of components from the ones
generating or destroying cavities, among others.
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