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Abstract. We analyze the impact of atlas construction within the context of an
atlas-guided segmenter applied to a morphometry study in neuroanatomy. Auto-
matic segmenters often rely on anatomical information encoded via probabilis-
tic atlases. These atlases are frequently constructed by registering collections of
training data. In this paper, we study the impact of registration methods as well
as the training data on automatic segmentation results. With respect to registra-
tion, we focus our comparison on pairwise vs. group-wise methods and fixed vs.
online coordinate systems. For the training data, we consider collections of pop-
ulation specific and general population data. To study the impact of these factors,
we revisit a previously published statistical group comparison that was based on
manual segmentations. For each atlas type, we record the group differences based
on automatic segmentations and compare these findings to the original ones. Fur-
thermore, we measure the Dice overlap between manual and automatic segmen-
tations. Our results indicate some advantages for coordinate systems that are de-
veloped in an online fashion.

1 Introduction
Neuroscience studies frequently use volumetric measures of brain structures for the de-
tection of morphological differences between patient groups [1]. These models are of-
ten based on manual segmentations, where experts outline substructures of major tissue
compartments in MR images. Recently, automatic methods [2–5] have been proposed
to replace this time-consuming procedure. These methods typically rely on statistical
atlases (or spatial priors) to represent the variations within a population and to compen-
sate for missing structural information in MR images.

Registration algorithms that facilitate the construction of these atlases can be char-
acterized by, for example, their scalability, unbiasedness [6–8] and inverse consistency
[9]. Although it is a difficult task to quantitatively characterize the performance of these
methods with respect to one another, one can study their impact on particular applica-
tions. In this article, we specifically investigate how atlas creation procedures influence
brain segmentation results.

Atlases used by segmentation processes are not only influenced by the type of
registration but also by the nature of the underlying training data. For instance in a
population-specific study, one might separately construct an atlas for each population,
such as healthy and diseased, to increase the accuracy of the corresponding automatic
segmentations. However, this might introduce a bias in the study as the data is not
uniformly processed. On the other hand, if one chooses the conservative approach of
building a single atlas based on a subset of the data, one risks under-representing the
variations within the population [10]. Therefore it is essential to understand how atlas
construction influences the segmentations. One recent study evaluates the performance
of atlas-based segmentation methods using single (individual or average) vs. multiple
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atlases [11]. In that case, however, the segmentation and atlas generation steps are com-
bined, thus it is not possible to test for individual performance of these components.

In this paper, we study the impact of atlases by revisiting the study of [12], which
analyzes morphometric differences in sub-structures of the gray matter between con-
trols, first-episode affective, and first-episode schizophrenics. Instead of manual seg-
mentations, we base the group comparisons on the results of an automatic segmentation
tool [4] available through the 3DSlicer (http://www.slicer.org). More specifically, this
tool incorporates statistical atlases capturing the spatial distribution of the structures to
be segmented. By comparing the automatically generated labels to the gold standard
manual segmentations of [12], we are able to quantify the influence of atlases on the
outcome. We investigate three different methods for atlas construction using fixed vs.
online coordinate systems and group- vs. pair-wise registration methods. Using those
algorithms, both group-specific (multiple) and single atlas segmentations are carried
out. To our knowledge, this is the first time that the impact of these various styles of
atlas creation algorithms is quantitatively compared in an application. We compare our
results to those that rely on the manual segmentations.

2 Atlas Construction

The goal of this paper is to study the impact of different atlas construction styles on the
segmentation approach of [4] by revisiting the clinical study of [12].

As is done frequently, we first register the MR images of the training data set to a
common coordinate frame. Then, the resulting transformations are applied to the corre-
sponding manual segmentations. Label-specific probabilistic atlases are then defined by
the normalized frequency of the occurrence of the label at each voxel location within
the set of aligned segmentations. Finally, we align the atlas to the test cases by first
registering the common coordinate system of the atlas to the MR images of the test
cases and then applying the same deformations to the frequency maps. For this task,
we choose the B-spline implementation by [13] (other intensity based - non-rigid reg-
istration methods would have been suitable choices). The brain segmentation tool then
relies on the so-aligned frequency maps in order to resolve any potential ambiguities.

In this analysis, we differentiate between two sets of registration methods. The co-
ordinate system of one set is fixed while it is developed online, during the execution of
the algorithm, for the other. Some representatives of the former group are algorithms
that use the Talairach coordinates frame [14, 15], and group-wise registration methods
where a particular sample of the input population is selected in order to serve as a ref-
erence frame [16, 17]. In these methods, selecting the fixed template as a good group
representative is non-trivial. For example, in the case of clinical studies, diseased mem-
bers of the population could be erroneously chosen to represent the full data set. The
latter registration group is represented by methods that are, by construction, unbiased.
In their case the target coordinate system is either implicitly or explicitly computed
during the alignment process [7, 6, 8, 18]. There exist methods that could be catego-
rized in-between these two groups. Certain approaches, for example, first select a fixed
registration reference frame and then, following a set of pair-wise alignments, the av-
erage transformation is applied to the reference in order to construct the final atlas [9,
19]. And in [20] the template is only used as an intensity reference and not for shape.
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In the current study, we selected representatives of both groups in order to test for
differences in the segmentation results due to the corresponding atlases. We imple-
mented two registration methods that rely on a fixed coordinate system. One does a
simultaneous group-wise registration to a particular member of the training set [16] and
the other carries out a sequence of pair-wise registrations to a pre-selected template. For
online alignment, we implemented an approach in which the mean of the input images
is considered as the template and a set of pair-wise registrations ensure the group-wise
spatial alignment (this technique is similar to the framework of [21]). The other on-
line method is a simultaneous, unbiased group-wise registration technique referred to
as congealing [8]. When selecting these techniques, we considered scalability, com-
plexity, and computational performance of these algorithms. The pair-wise registration
methods use mutual information [22] as an objective criterion and the other methods
optimize the sum of voxel-wise entropies. The transformations that were recovered by
the registration algorithms were 9-parameter affine. A brief summary and a schematic
representation (see Fig.1) of our atlas construction methods follow:

– GroupOnline : do intensity-based group-wise registration among all the inputs
simultaneously using sum of voxel-wise entropies [8]

– PairOnline : iterate between computing the mean of the input images (template)
and performing intensity-based pair-wise registration between the template and the
inputs based on mutual information

– GroupFixed : align training data to a fixed template through group-wise registra-
tion, which minimizes the sum of voxel-wise entropies on binary images [23]

– PairFixed : align the training data to a fixed template through a intensity-based
pair-wise registration between template and the inputs using mutual information
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Fig. 1. A schematic description of the four registration method being compared for atlas construction. Solid arrows indicate
explicit pair-wise registration while the dotted ones refer to an implicit alignment.

3 Experimental Setup
In order to evaluate the impact of the different atlas construction approaches on the seg-
menter, we revisit the study by Hirayasu et al. [12]. This brain morphometry study com-
pares the relative volumes of the right and left superior temporal gyrus (rSTG/lSTG),
amygdala (rAMY/lAMY), and hippocampus (rHIP/lHIP) between first-episode schizophre-
nia patients, first-episode affective psychosis patients, and healthy comparison subjects.
The relative volume of an anatomical structure is the ratio between the volume mea-
sured from the manual segmentation of the structure and the intra-cranial cavity.

Hirayasu et al. tested the null-hypothesis that the relative volumes of the anatomical
structures do not significantly differ between the three groups. The outcome of the cor-
responding ANOVA test appears in the second column of Table 1. In the remainder of
this paper, we view this outcome as the baseline and ground truth for our comparisons.
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The data set consists of 50 subjects: 16 SchiZophrenia patients (SZ), 17 AFFec-
tive patients (AFF), and 17 CONtrol subjects (CON). The MR acquisition protocol (1.5
Tesla, GE Medical Systems) included an SPGR (256×256×124, 0.9375×0.9375×1.5mm)
and and a T2-weighted sequence (256×256×54, 0.9375×0.9375×3mm). Manual seg-
mentations for the six substructures were available for all of these data sets.

Our analysis of the impact of an atlas on the results of the group difference study
consists of three steps. In the first step, the atlas is constructed via the methods discussed
in Sec. 2 from the training set. As mentioned earlier, the training set itself can bias the
final results. That is because we assume that the training data properly represents the
spatial variations within a population. We therefore alter the size and composition of
the training data in the following ways:

– GrpTr: We construct an atlas tailored for each group by applying the methods of
Sec. 2. This approach assumes that the spatial variations of the three groups in the
full data set are best captured by a set of atlases and not a single one.

– AllTr: The training set consists of the entire data set. Unlike in the case of GrpTr,
this method assumes that the variations within the full population can be adequately
represented by a single probabilistic atlas.

– ConTr: The training set is the control group. This construction assumes that a re-
stricted sub-group of the entire data captures the variations within the population.

Our tests are based on theleave-one-outframework which helps to reduce the risk of
introducing further bias into the segmentation results.

In the second step of the work flow, the test data is segmented via the automatic
method of [4] guided by the previously generated priors. We choose this approach as it
is, to our knowledge, the only publicly available segmenter for cortical structures that
can integrate atlases other than the ones provided by its implementation. We explicitly
define the posterior and anterior boundaries across structures via the label maps of [12]
as this boundary is defined by anatomical landmarks that were not provided in the train-
ing data set. An expert can quickly perform this task by identifying the first slice and
the last slice showing the fornix along the border of the lateral ventricle.

In the third step of the work-flow we repeat the morphology study of [12] and per-
form a volume overlap analysis. A detailed description is presented in the next section.

4 Comparison and discussion

Visually, the atlases associated with the four registration methods do not produce sig-
nificantly different results. Thus we discuss the quality of the atlases based on two
different quantitative measures. In Sec. 4.1, we repeat the statistical analysis of [12]
using the automatic segmentations and rate the corresponding atlases by the agreement
of the results to the original findings. In Sec. 4.2, we measure volume overlap between
the automatic and manual segmentations across the fifty cases using the Dice metric.
4.1 Relation Between Detecting Group Differences and Atlas Type

Table 1 summarizes the outcome of the study using the manual label maps (Manual) as
well as the automatic segmentations guided by ten different atlases. Except for the Pair-
Fixed method, whose evaluation is computationally the most expensive, all registration
methods have been tested with atlases constructed using the GrpTr, AllTr and ConTr
methods. In the case of the PairFixed method we present results for the ConTr atlas.
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Region Manual GroupOnline PairOnline GroupFixed PairFixed
GrpTr 1 AllTr ConTr GrpTr1 AllTr ConTr GrpTr2 AllTr ConTr ConTr

lSTG 0.021 <0.001 0.054 0.089 0.005 0.041 n.s. 0.015 n.s. n.s. n.s.

rSTG n.s. n.s. 0.03 0.003 n.s. 0.064 n.s. n.s. n.s. n.s. n.s.

lAMY n.s. n.s. n.s. n.s. n.s. n.s. n.s. <0.001 n.s. n.s. n.s.

rAMY 0.048 0.024 0.042 0.073 0.009 0.046 0.042 <0.001 0.039 0.040 0.057

lHIP 0.005 <0.001 0.001 <0.001 <0.001 0.004 0.001 <0.001 0.009 0.007 0.002

rHIP n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.024 n.s. n.s. n.s.
1 No significant bias was measured within the set of atlases
2 Atlas-related bias was detected

Table 1.The table contains the p-value of our One-Factor ANOVA tests based on manual as well
as automatic segmentations. The automatic results were produced using ten different atlases. The
statistical comparison of the automatic segmentations only agreed with the original findings for
three atlases, all of them based on the Online technology.

For each structure, we performed a One-Factor ANOVA test based on the relative
volume measures between the three groups of the input (AFF, CON, SZ). The corre-
sponding p-values are recorded in the table. We consider p-values below 0.05 as sig-
nificant and we abbreviate p-values above 0.1 as n.s. (non significant). Entries in bold
indicate agreement with all the original findings of [12], which are also shown in Ta-
ble 1 (Manual). We first note that none of the atlases based on a sub-set of the study
data (ConTr) detects significant differences in the lSTG, which is not consistent with
Manual. This suggests that seventeen subjects do not properly represent the variations
of that structure in the data set.

We next discuss the performance of the atlases based on a fixed template (Group-
Fixed and PairFixed). In none of the six cases do the results agree completely with
the original findings. However, the results of GroupFixed-GrpTr suggest significant
group differences in five instead of three compartments (produced by the manual anal-
ysis). The lower p-values might be due to bias introduced when training an atlas for
each group separately. To test this possibility, we segmented the controls with the three
group-specific atlases (AFF, CON, SZ) and performed an ANOVA test for each struc-
ture. In this test, the results of GroupFixed-GrpTr indicate significant differences for
every structure but for the lSTG. These results indicate that atlases based on a fixed
template negatively impact the performance of the automatic segmenter as a fixed tem-
plate increases the bias in the automatic segmenter.

The statistical analysis of the online methods (GroupOnline and PairOnline) rein-
forces the previous observation as the results of three out of the six experiments fully
agree with the original findings. Furthermore, for the atlases based on GrpTr, in the case
of both the GroupOnline and PairOnline frameworks, no significant bias was detected
when segmenting the controls with the three group-specific atlases. This shows that the
automatic segmenter can reproduce the original findings of the original study as long
as one carefully chooses the method for atlas construction. In addition, it confirms the
notion that templates generated from a group of scans are less likely to increase the bias
in an atlas then templates based on a single scan. Finally, we note that it is only GrpTr
that produces results for both online methods that are consistent with the original find-
ings; more importantly, it does so with a lower p-value than originally reported. This
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Reg GroupOnline PairOnline GroupFixed PairFixed
GrpTr AllTr ConTr GrpTr AllTr ConTr GrpTr AllTr ConTr ConTr

lSTG 71.1 72.3 72.0 72.5 73.4 73.2 69.9 71.3 70.2 69.1

rSTG 70.0 70.9 70.7 72.1 71.9 72.0 69.7 71.0 69.3 68.8

lAMY 85.8 86.2 87.0 86.5 86.7 87.3 85.5 85.7 86.7 85.7

rAMY 85.0 85.2 84.9 85.0 85.3 85.1 85.0 85.1 85.2 83.9

lHIP 80.3 81.5 80.8 81.7 82.0 81.5 81.8 80.4 80.8 77.4

rHIP 82.7 82.9 82.5 83.0 83.2 82.9 81.7 81.3 81.3 80.1

AVG 79.1 79.9 79.6 80.1 80.4 80.3 78.5 79.1 78.9 78.1

Reg Manual GroupFixed
Multiple ConTr

lSTG 76.7 70.1

rSTG 76.2 71.4

lAMY 87.7 85.3

rAMY 87.3 83.0

lHIP 86.2 82.6

rHIP 85.7 82.8

(a) Dice measure in percent over entire data set (b) Reliability data set

Table 2.(a) Mean Dice score in percent of the automatic methods (b) Mean Dice score in percent
of GroupFixed-ConTr with the ones produced by two experts (Manuals) over four cases

indicates that using a set of atlases better represents the spatial variations across the fifty
subjects than just using a single one.

Finally, Table 1 seems to suggest that the PairOnline method produces more reli-
able results than GroupOnline as not only the findings for GrpTr but also AllTr agree
with the original ones. However, we discovered that the slightly better performance of
PairOnline does not indicate a lower bias compared to the GroupOnline framework but
it is rather a result of a smoother atlas generated by PairOnline. We find that the au-
tomatic segmenter produces more accurate labelings using smoother atlases, which is
indicated by the lower p-value in the significant findings in AllTr vs GrpTr. On the one
hand, smoother atlases better capture the variability within our population as training is
based on incomplete data. On the other hand, bias introduced by the non-rigid registra-
tion aligning the atlas to the scan of a test subject is reduced with smoother templates as
also reported by [24]. With respect to our study, the degree of smoothness of the atlases
is measured by the total entropy of the atlas, which are higher for the PairOnline than
GroupOnline scheme. We therefore are not able to conclude that the atlases generated
by PairOnline have less bias than those constructed by GroupOnline.
4.2 Volume Overlap between Automatic and Manual Segmentation

A popular metric used for measuring accuracy of automatic segmentations is the Dice
measure with respect to manual labellings. Table 2 (a) summarizes the mean pair-wise
Dice score in percent over the fifty image volumes and their structures.

We note that for each type of atlas training, PairOnline and GroupOnline achieve
the highest average score for all six structures. In contrast to previous findings, the
analysis of the Dice scores suggests that using a single atlas (AllTr) is favorable over
a group specific one (GrpTr). For all the methods where the corresponding tests were
run, GroupOnline, PairOnline and GroupFixed, the atlas computed by training on all
inputs (AllTr) achieves a slightly higher average Dice score than GrpTr. We also note
that the PairFixed approach receives the lowest average Dice score in the ConTr ex-
periments. The accuracy of the segmentation method depends on how well the spatial
priors of the atlas capture the variations within the population and on the accuracy of
the non-rigid warp of the atlas to the target (the input to be segmented). The accuracy
of the non-rigid registration is generally influenced by the resolution of the atlas, with
lower resolution favored. Thus, the difference in performance between GroupOnline
and PairOnline could potentially indicate that the accuracy of the spatial alignment pro-
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duced by PairOnline is slightly inferior to that of GroupOnline. To better interpret the
mean Dice scores, we also analyzed the four volumes from our data set that were se-
lected for inter-rater reliability tests in [12]. These cases were segmented by the rater of
our current study as well as two additional experts. As in the case of automatic segmen-
tations, we computed the mean Dice score for the two additional experts by comparing
their segmentations to the label maps of the rater of this study. The combined score of
the two experts as well as the mean score of GroupFixed-ConTr for those four particular
cases are presented in Table 2(b). For each structure, the results of our implementation
received slightly lower scores than the manual ones. If we now interpret the Dice score
of the experts as an indication for the ambiguity of the boundary location of a structure,
then the discrepancy between the two types of segmentations is directly linked to this
ambiguity. The discrepancy is highest for the lSTG (6.6%) and rSTG (4.8%), where the
manual raters received the lowest Dice scores (76.7% and 76.2%). The discrepancy is
lowest for the lAMY (2.4%), where the experts receive the highest score (87.7%).

5 Conclusion
We conclude from these experiments that for relatively large training sets, registration
methods with a fixed template seem to bias the results more than those generating a
template online. For our data set, we also showed that confining the training set to the
control group or constructing it by random sub-sampling did not adequately represent
the morphological variations within the data set. We therefore based one class of atlases
on the entire data set via the leave-one-out style framework. The automatic segmenta-
tions produced by the atlas based on this training set in combination with the pairwise
and groupwise online methods achieved the highest average Dice score over all other
tested combinations. A less conservative approach is one where an atlas is generated for
each group separately. One has to carefully apply this strategy as it can produce segmen-
tation results leading to overconfident findings, such as in the case of the group-wise
registration with a fixed template. However, we did not detect any group biases in the
atlas when generated via the GroupOnline and PairOnline methods. These frameworks
not only fully agreed with the original findings but also did so with higher confidence.
We conclude that one has to carefully design an atlas for a given application.
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