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Abstract

In this work, we describe a white matter trajectory clus-
tering algorithm that allows for incorporating and appro-
priately weighting anatomical information. The influence
of the anatomical prior reflects confidence in its accuracy
and relevance. It can either be defined by the user or it can
be inferred automatically. After a detailed description of
our novel clustering framework, we demonstrate its proper-
ties through a set of preliminary experiments.

1. Introduction

In recent years, diffusion tensor MR imaging (DT-MRI)
has emerged as a powerful tool to identify white matter
pathologies, minimize post-operative neurological deficit,
and study brain development and aging. Tractography al-
gorithms are often used to extract pathways of fiber tracts
in order to aid the visualization of brain connectivity. How-
ever, most clinical studies to date have focused on the anal-
ysis of scalar diffusion parameters measured in a manually
or semi-automatically defined region of interest (ROI) [12].
It is well-known that such ROI-based methods suffer from
user-dependence and uncertainty in defining these ROIs,
which sometimes lead to inconsistency in the results [6].
Several tract-oriented quantitative analysis algorithms have
thus been proposed to mitigate the subjectivity in defining
the ROIs [3,9]. However, tractography methods themselves
are prone to the subjectivity and sensitivity resulting from
the selection of seed points [2]. Furthermore, due to the
presence of noise and image imperfections, outliers are of-
ten generated in tractography.

It is expected that clustering of fiber trajectories into
groups can greatly improve the quality of tract-oriented
analysis and eliminate the problems associated with imper-
fections in the tractography step. Clustering, especially if
the groups correspond to anatomically known bundles, en-
sures that the measurements are performed on a given tract
in all subjects rather than on a somewhat arbitrary region.
It also allows the tractography process to be seeded from
the whole brain or a sufficiently large ROI, which makes it
less dependent on the quality of the user input. Although a
variety of clustering algorithms have been proposed in the
literature to group fiber trajectories, they are mostly unsu-
pervised methods [1, 3, 10]. We believe that a supervised
clustering, that benefits from anatomical information, not
only produces anatomically meaningful clusters, but also
yields more robust results that are less sensitive to the pres-
ence of outliers and imperfections in the DT-MRI data.

Earlier attempts to use anatomical information in fiber
clustering are limited to methods where trajectories are
grouped based on their distance to the trajectories in a ref-
erence subject (atlas) [8] and where groups of fiber trajec-
tories are associated to anatomical structures after they are
clustered and mapped into an embedded space [11]. The
former relies solely on the atlas information and treats each
trajectory individually, while the latter does not use the atlas
in the clustering phase. Most recently, an atlas-based quan-
titative analysis of white matter fiber tracts has been pro-
posed in which a probabilistic parcellation map of the tracts
is used to obtain the weighted average of a set of parame-
ters [5]. This approach relies exclusively on the atlas data
and hence does not take into account the coherence among
the trajectories in each bundle. Furthermore, it is limited to
averages over the entire ROI or slices perpendicular to the
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Figure 1. In our approach the probabilistic model is constructed on
distances between the curves(trajectories) and the cluster centers
(dashed curves), not on point coordinates.

main axes of the atlas coordinate system.
While existing methods provide valuable quantitative in-

formation about the integrity of fiber tracts, they are either
limited to specific fiber bundles or prone to be adversely af-
fected by inaccurate settings of user-specified parameters.
In this work, we introduce a probabilistic method that rig-
orously incorporates anatomical prior information from an
atlas of fiber tracts [13]. This framework is an extension
of our earlier work, in which we described an expectation-
maximization solution to cluster the fiber trajectories in a
mixture model context [9]. The influence of the anatomical
prior in the current model reflects confidence in its accu-
racy and relevance. It can either be defined by the user or it
can be inferred automatically. After a detailed description
of the model, we demonstrate its properties through a set of
preliminary experiments.

2. Method

We treat each trajectory as a 3-D curve, uniformly sam-
pled along its arc length. For each cluster, a center is de-
fined, which is a sampled curve similar to the trajectories.
For each trajectory, a vector di = [di1, ..., diK ] is calcu-
lated, where dik is the distance between the trajectory and
the kth cluster center as a function of their point coordinates
and correspondences [7], and K is the user-defined number
of clusters (See Figure 2).

Once the trajectories are extracted from the DTI data us-
ing a tractography algorithm, they are mapped into the atlas
coordinate system. Each trajectory then takes a membership
probability q′i = [q′i1, ..., q

′
iK ], where each q′ik element de-

notes the atlas-specified membership of each trajectory i to
cluster k and is calculated by summing up the probabilities
of its overlapping voxels with the probability maps of the

fiber tracts in the atlas, and normalizing with the volume of
each tract in the atlas. The membership probabilities of each
trajectory are then normalized, so that ∀i,

∑K
k=1 q

′
ik = 1.

We denote the unknown label of each trajectory by z
which is assumed to follow a single-trial multinomial dis-
tribution,

zi ∼ Multinomial(πi), (1)

Pr(zi = k|πi) = πik, (2)

and πi’s follow a Dirichlet distribution, with parameters
controlled by the atlas. Specifically,

∑K
k=1 πik = 1 and

πi ∼ Dirichlet(qi) =
Γ(qi0)∏K
j=1 Γ(qij)

K∏
k=1

π
(qik−1)
ik , (3)

where Γ(.) is the gamma function, and qi0 =
∑K
k=1 qik.

To control the influence of the atlas to some extent, qi can
be set as qi = γq′i where γ > 0 is a weight factor. Doing so,
the expectation of the Dirichlet distribution for each trajec-
tory is set to the value it gets from the atlas, and the variance
of distribution is controlled by γ. However, once the expec-
tations, i.e. q′ik’s, are set, the variation of the Dirichlet dis-
tribution is limited. Better control is achieved if a weighted
average of the vector q′i and the unity vector is used, i.e.

qi = aγq′i + 1. (4)

The weight, a, controls the degree of influence of the atlas
on the clustering and can be set by the user. In the limit-
ing case when a = 0, the Dirichlet distribution becomes a
uniform distribution and hence the atlas does not have any
control on the clustering. When a = 1 the model reduces
to πi ∼ Dirichlet(γq′i + 1), which is slightly different
from what we introduced earlier to guarantee that the pa-
rameters of the distribution are larger than unity and avoid a
U-shaped distribution. Alternatively, the weight a can be
inferred from the atlas data if multiple atlases are avail-
able. One possible application of such a setting is to set
the weight proportional to the correlation between the at-
lases, i.e., set a close to 1 when all atlases agree with each
other and close to 0 when they disagree. Specifically, sup-
pose that M atlases, Q′(1), ..., Q′(M), are available, where
Q′(m) = {q′i(m)}Mm=1. A plausible setting for a can be
obtained by forming the correlation matrix of Q(m)’s and
taking the average of its non-diagonal elements. The prior
Q′ is calculated as:

q′i =
∑M
m=1 q

(m)
i

M
(5)

A more sophisticated possibility could combine multiple at-
lases, for example, if we had a collection of voxelwise la-
bellings (perhaps generated by hand), we could use STA-
PLE [14] to generate voxelwise label probabilities as input
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Figure 2. A graphical model that shows the inference of the priors
and cluster parameters form the data when an atlas prior is avail-
able that describes the dependencies between different variables.
π: atlas prior, z: trajectory label, d: data and g: parameters of
gamma distributions.

as described at the beginning of this section. When STA-
PLE combines labellings, it weights them according to how
consistent they are with the others.

To understand the dependencies between the variables,
Fig.2 shows the directed graphical model of the problem
setup. In this case Θ = {g,π}, i.e., the collection of the
parameters of the gamma distribution functions, g as well
as parameters of the multinomial distribution, π.

The goal is to estimate the membership likelihood of
each curve to each cluster based on the values of the dik’s
and qik’s. Note that calculating the probability density of
the points on the curves is not straightforward as they are
not statistically independent. Therefore, we use the distance
metric defined between the trajectories and cluster centers,
dik’s, to build the probability model. As detailed in [7], we
assume that distances for each cluster follow a Gamma dis-
tribution with shape, αk, and inverse scale parameters, βk:

Gamma(d|αk, βk) = dαk−1 β
αk

k e−βk d

Γ(αk)
for d ∈ [0,∞)

(6)
where Γ(.) is the gamma function. We assume that each
element of the vector di follows the distribution

dik ∼

{
Gamma(gk) k = zi

Uniform([0, d0]) k 6= zi
, (7)

where, gk is the parameter set of the Gamma distribution,
{αk, βk}, for each cluster and U(x; 0, d0) is the uniform
distribution function over [0, d0] with d0 a large enough
constant.

3. Expectation Maximization

Expectation Maximization (EM), introduced by [4] is
frequently used for the inference with missing data or pa-
rameters. To apply the EM approach in clustering, an in-
dicator variable is usually defined to represent the hidden
variable which here is the cluster memberships. We denote
this variable with Z, where zi = k represents the mem-
bership of the data point i to the cluster k. We denote the
complete data likelihood by p(d, z|Θ). The goal of our EM
approach is to iteratively find the MAP estimates of the pa-
rameter Θ by maximizing the expectation of log posterior,
or equivalently the joint, of the complete data at each itera-
tion:

Θt+1 = arg max
Θ

Ez|d,Θt

[
log p(z,d,Θ)

]
where superscript t denotes the set of parameters at iteration
t. The maximization step takes the form:

Θt+1 = arg max
g,π

Ez|d,gt,πt

[
log p(z,d,g,π; q)

]
= arg max

g,π
Ez|d,gt,πt

[
log p(d|z,g) +

log p(z|π; q) + log p(π; q) + log p(g)
]

(8)

We assume a uniform distribution over g, the parameters
of the Gamma distribution, therefore the last term in the
above equation is a constant and can be omitted from the
maximization expression.

Θt+1 = arg max
g,π

Ez|d,gt,πt

[ N∑
i=1

log p(di|zi,g) +

N∑
i=1

log p(zi|π; q) + log p(π; q)]

= arg max
g,π

log p(π; q) +

N∑
i=1

K∑
k=1

pik
(

log p(di|zi = k,g) + logπik
)
(9)

With the assumption of independence of πi’s, we write
log p(π; q) =

∑K
k=1 log p(πi; qi) where πi’s follow a

Dirichlet distribution as specified in Equ. (3).



3.1. Expectation Step

pik’s are computed in the expectation step using Bayes
rule as follows:

pik = p(zi = k|di,gtk,πti)

=
p(di|zi = k,gtk)p(zi = k|πti)∑K
j=1 p(di|zi = j,gtj)p(zi = j|πti)

=
p(di|zi = k,gtk)πik∑K
j=1 p(di|zi = j,gtj)πij

. (10)

3.2. Maximization Step

Now we only look at the i’th component of Θ:

Θt+1
i = arg max

g,πi

( K∑
k=1

(qik − 1) log πik +

K∑
k=1

(
pik log p(di|zi = k,g) + pik log πik

))
(11)

Θi is the collection of parameter of the multinomial dis-
tributionπi and parameter of the Gamma distribution g. We
do the maximization with respect to each parameter sepa-
rately as follows:

3.2.1 Updating parameters of the multinomial distri-
bution

In order to get the updated parameters of the multinomial
distribution:

π
(t+1)
i = arg max

πi

K∑
k=1

(
(qik − 1) log πik + pik log πik

)
= arg max

πi

K∑
k=1

(
(qik + pik − 1) log πik

)
, (12)

under the constraint that
K∑
k=1

πik = 1 ∀i (13)

To do the maximization, we add the Lagrange multiplier, λ,
to Equ.(12) and differentiate with respect to πik

π
(t+1)
i = arg max

πi

K∑
k=1

(
(qik + pik − 1) log πik

)
−λ(

K∑
k=1

πik − 1) (14)

or
qik − 1 + pik

πik
− λ = 0 (15)

This results in:

πik =
qik − 1 + pik

λ
. (16)

λ is obtained by summing up the Equ.(16) over the clusters:

λ =
∑K
k=1(qik − 1 + pik)∑K

k=1 πik
= qi0 −K + 1. (17)

Substituting the values from Equ. (4) for qik in the above
equation results in the following expression which explic-
itly shows the relation to the controlling parameters of atlas
influence:

πik =
aγq′ik + pik
aγ + 1

. (18)

In the limiting case when a = 0, the above equation reduces
to πik = pik, and when aγ � 1 it becomes πik = q′ik.

3.2.2 Updating parameters of the gamma distribution

The updated cluster parameter, g, is obtained from:

gt+1 = arg max
g

N∑
i=1

K∑
k=1

pik log p(di|zi = k,g) (19)

The maximization equations are obtained by differentiat-
ing the following expression from the EM formulation with
respect to each parameter.

Q(g) =
N∑
i=1

K∑
k=1

pik

(
log Gamma(dik; gk)

+ log
∏
j 6=k

U(dij ; 0, d0)
)
. (20)

The inverse scale parameter is obtained by ∂Q(g)/∂βk =
0, which simply results in:

N∑
i=1

pik(
αk
βk
− dik) = 0 (21)

or

βk = αk

∑N
i=1 pik∑N

i=1 pikdik
. (22)

The shape parameter is given by ∂Q(g)/∂αk = 0, which
thus:

N∑
i=1

pik

[
log dik + logαk + 1 + log

∑N
i=1 pik∑N

i=1 pikdik
+

dik

∑N
i=1 pik∑N

i=1 pikdik
− ψ(αk)

]
= 0 (23)



where ψ(.) = Γ′(.)/Γ(.) is the digamma function. The
resulting equation

logαk − ψ(αk) = − log
∑N
i=1 pik∑N

i=1 pikdik
−
∑N
i=1 pikdik∑N
i=1 pik

,

(24)
does not have a closed-form solution. However, good ap-
proximations can be obtained by noting that

logαk − ψ(αk) ≈ 1
αk

(1
2

+
1

12αk + 2
)
. (25)

This gives:

αk ≈
3− x+

√
(x− 3)2 + 24x
12x

, (26)

where

x = log
(∑

i pikdik∑
i pik

)
−
∑
i pik log(dik)∑

i pik
. (27)

Once the EM algorithm converges, we update the clus-
ter centers and recompute the distance vectors. The outliers
are identified in the expectation step. If the membership
likelihoods of a trajectory in all clusters are less than a user-
specified threshold, that trajectory is identified as an outlier
and is removed from further data processing. In fact, with
this threshold, the heterogeneity of the trajectories within
each cluster can be controlled. The larger the threshold
is, the more compact the resulting bundles are, and conse-
quently the greater the number of unclustered trajectories.

4. Results
To show that the proposed method is able to effectively

control the influence of the prior information on the clus-
tering, we apply it on some simulated data. For illustra-
tion purposes, we consider two clusters and construct d by
drawing samples from gamma and uniform distributions as
specified in Equ.(7). Two scenarios were examined: In the
first one, the atlas priors, q′iks, were drawn from a uniform
distribution in the [0.8, 1] range for each data point i that
belongs to the kth cluster. This models a case where the
atlas prior is in agreement with the membership probability
inferred from the data only. In the second case, q′iks were
drawn from a uniform distribution in the [0, 0.2] range if the
data point i belongs to the kth cluster, i.e. an extreme case
where the atlas priors oppose the membership probability
inferred form the data.

Figure 3 shows a histogram of the posterior probabili-
ties, colored based on the true clustering and for the case
where the atlas prior is in agreement with the membership
likelihood inferred from the data. Clustering results for two
different values of a = 0, i.e. no atlas, and a = 1, i.e. full
atlas control are shown. The ideal clustering is defined as

a case where all data points are assigned to their true clus-
ters, in other words when all data points from each cluster
appear in either the upper or lower half of the histogram.
While without the atlas roughly 15% of the data points are
mis-clustered, only a few data points are mis-clustered once
the atlas is used.

Figure 4 shows the case where the atlas disagrees with
the membership likelihoods inferred from the data and for
different values of the weight a. In this case the number
of mis-clustered data points increases as the atlas weight is
increased. Fig. 5 summarizes the impact of the atlas weight
on the number of the mis-clustered data points. When the
atlas agrees with the data, the mis-clustering ratio decreases
as the atlas weight is increased and when it disagrees with
the atlas the mis-clustering ratio increases.

We believe that the flexibility that our method offers on
controlling the influence of the anatomical atlas has impor-
tant applications in clinical studies. One such application is
in analyzing pathological cases where fiber tracts might de-
viate significantly from normal cases and thus the anatom-
ical atlas. Since cluster centers are able to evolve during
the course of the EM algorithm, the method is still able to
cluster the fiber trajectories reasonably well when a small
weight is given to the atlas, while the algorithm might fail
if the atlas is imposed too strongly. Another example where
it is important to control the atlas weight is when registra-
tion errors are present. To demonstrate the effectiveness of
our method in successfully clustering the fiber trajectories
in such a case, Fig. 6 shows the clustering results for tra-
jectories from the cingulum. When the atlas is imposed
strongly some of the trajectories that belong to cingulum,
i.e. are similar in shape and are located close to other tra-
jectories, are rejected only because they do not have enough
overlap with the atlas ROI. With a proper choice of the atlas
weight these trajectories are also included in the results.

5. Conclusions

A novel method was introduced to incorporate and con-
trol the influence of the anatomical knowledge in clustering
of white matter fiber trajectories. The Dirichlet distribu-
tion as a conjugate to the multinomial distribution was used
to rigorously model the prior information in an EM setup.
The influence of the atlas can be controlled by a parameter
which can be either set by the user or inferred from the atlas
information if more than one atlas is present to reflect the
degree of confidence in the prior knowledge. Preliminary
results presented in this paper demonstrate the effectiveness
of the proposed approach. To our knowledge this is the first
implementation which offers control over the strength of the
anatomical information for the clustering of fiber trajecto-
ries.



(a) (b)

Figure 3. A comparison of the clustering results with two degrees of atlas influence and with an atlas prior that agrees with the membership
likelihood inferred from the mixture model: (a) a = 0, i.e., no atlas,and (b) a = 1. Histograms of the membership probability pik, are
shown for synthetic data colored by the true cluster assignment. Misclassification is indicated by the presence of red samples on the left
side of the histograms or blue samples on the right. The ratio of mis-clustered data points decreases from 15% to less than 2% when the
atlas is used. Note that the y-axis is in logarithmic scale.

(a) (b)

(c) (d)

Figure 4. A comparison of the clustering results with different degrees of atlas influence, but with an atlas prior that disagrees with the
membership likelihood inferred from the mixture model: (a) a = 0, i.e., no atlas, (b) a = 0.25, (c) a = 0.5, and (d) a = 1. Histograms
of the membership probability, piks, are shown for synthetic data colored by the true cluster assignment. Misclassification is indicated by
the presence of red samples on the left hand side of the histograms. Misclustering ratio increases as the influence of the atlas is increased.
Note that the y-axis is in logarithmic scale.



Figure 5. Effect of atlas weight, a, on the mis-clustering ratio and
when the atlas prior agrees (filled symbols) of disagrees (open
symbols) with the membership likelihood inferred from the mix-
ture model.

(a)

(b)

(c)

Figure 6. The influence of atlas weight on the clustering of cin-
gulum trajectories: (a) atlas-specified ROI for cingulum and clus-
tering results with (b) a = 1 and (c) a = 0.5. When the atlas is
imposed strongly some of the trajectories that belong to the cin-
gulum are rejected only because they do not have enough overlap
with the atlas ROI.
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