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Encoding Probabilistic Brain Atlases
Using Bayesian Inference
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Abstract—This paper addresses the problem of creating prob-
abilistic brain atlases from manually labeled training data. Prob-
abilistic atlases are typically constructed by counting the relative
frequency of occurrence of labels in corresponding locations across
the training images. However, such an “averaging’ approach gen-
eralizes poorly to unseen cases when the number of training images
is limited, and provides no principled way of aligning the training
datasets using deformable registration. In this paper, we generalize
the generative image model implicitly underlying standard “av-
erage” atlases, using mesh-based representations endowed with an
explicit deformation model. Bayesian inference is used to infer the
optimal model parameters from the training data, leading to a si-
multaneous group-wise registration and atlas estimation scheme
that encompasses standard averaging as a special case. We also
use Bayesian inference to compare alternative atlas models in light
of the training data, and show how this leads to a data compres-
sion problem that is intuitive to interpret and computationally fea-
sible. Using this technique, we automatically determine the optimal
amount of spatial blurring, the best deformation field flexibility,
and the most compact mesh representation. We demonstrate, using
2-D training datasets, that the resulting models are better at cap-
turing the structure in the training data than conventional proba-
bilistic atlases. We also present experiments of the proposed atlas
construction technique in 3-D, and show the resulting atlases’ po-
tential in fully-automated, pulse sequence-adaptive segmentation
of 36 neuroanatomical structures in brain MRI scans.

Index Terms—Atlas formation, Bayesian inference, brain mod-
eling, computational anatomy, image registration, mesh genera-
tion, model comparison.

I. INTRODUCTION

HE study of many neurodegenerative and psychiatric
diseases benefits from fully-automated techniques that
are able to reliably assign a neuroanatomical label to each
voxel in magnetic resonance (MR) images of the brain. In
order to cope with the complex anatomy of the human brain,
the large overlap in intensity characteristics between structures
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of interest, and the dependency of MRI intensities on the
acquisition sequence used, state-of-the-art MRI brain labeling
techniques rely on prior information extracted from a collection
of manually labeled training datasets [1]-[9]. Most typically,
this prior information is represented in the form of probabilistic
atlases, constructed by first registering the training datasets
together using affine transformations, and then calculating
the probability of each voxel being occupied by a particular
structure as the relative frequency that structure occurred at that
voxel across the training datasets.

While such “average” atlases are intuitive and straightforward
to compute, they are not necessarily the best way to extract pop-
ulation-wise statistics from the training data. A first problem is
that probabilistic atlases, built from a limited number of training
datasets, tend to generalize poorly to subjects not included in the
training database. This is essentially an overfitting problem: due
to the enormous variability in cortical patterns across individ-
uals, the atlas may erroneously assign a zero probability for ob-
serving a particular label at a specific location, simply because
that label did not occur at that location in the training datasets.
In order to alleviate this problem, a common strategy is to blur
probabilistic atlases using e.g., a Gaussian kernel, mimicking
the effect of a larger training database (see, for instance, [10]
and [5]). While it is intuitively clear that less blurring will be
needed as the size of the training database grows, no clear guide-
lines exist to determine what the optimal amount of blurring is
for a given dataset, or when blurring is no longer necessary.

Another problem with “average” atlases is that they do not
model nonlinear deformations that would allow one to align
corresponding structures across the training datasets, although
this would seem a natural way to capture anatomical variations.
Furthermore, even if nonlinear deformations were explicitly al-
lowed during the atlas construction phase (as in [11] and [12]),
it is not clear how flexible a deformation field model would be
appropriate for the task at hand. While the sharpness and struc-
tural resolution of population averages after nonrigid alignment
is a typical measure of success in intersubject registration of
neuroanatomical images [13]-[19], such results are not neces-
sarily helpful in building priors: more flexible deformation fields
will always allow us to align the training datasets better, but are
also much weaker at representing the typical variations observed
across the population.

In this paper, we propose several advancements to the prob-
abilistic atlas construction problem, providing quantitative an-
swers to the issues raised above. Central to our approach is
the notion that standard probabilistic atlases implicitly assume
a specific generative image model for the training datasets at
hand, and that estimating the relative frequency of occurrence
of various structures in each voxel is, in fact, a Bayesian as-
sessment of the most likely parameters of this model given the
training data. With this Bayesian modeling framework in mind,
the novel contribution in this paper is three-fold.
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1) We propose a generalization of the generative image model
underlying traditional probabilistic atlases, using a mesh-
based atlas representation, and allowing for nonlinear de-
formations. Using the notation H for a specific model and
6 for the parameters of such a model, alternative models
H; are fully described by a prior distribution p(6 | H;)
for their model parameters; and a likelihood distribution
p(D | 6, H;) that defines what predictions the model makes
about the training data D. In the context of this paper, dif-
ferent models H; refer to different mesh configurations
and/or different values for a hyper-parameter regulating
the flexibility of the deformation field models; the param-
eters f parametrize the deformation fields and the relative
frequency of occurrence of structures at various locations
throughout the atlas.

2) Assuming that a given model H; is true, we use Bayes’
theorem to try to infer what the model’s parameters  may
be, given the data D. Maximizing

p(0| D, H;) o< p(D |0, H;)p(0 | H;)

leads to a novel group-wise registration process [16]-[22],
in which the deformations warping the atlas to each of the
training datasets are estimated simultaneously with an un-
biased probabilistic atlas. For a specific choice of model
H,, this process devolves into the standard “average” prob-
abilistic atlas estimation.

3) Again using Bayes’ rule, we compare various alternative
models H; in light of the training data D, by evaluating

p(H; | D) oc p(D | H;)p(H;).

Having no a priori preference for any model H; over the
others, we use equal priors p(H;) for alternative models,
and use the so-called evidence p(D | H;) to rank them. This
allows us to objectively assess the optimal amount of blur-
ring in a probabilistic atlas for given training data, to de-
termine the optimal flexibility of deformation field models,
and to construct compact atlas representations using con-
tent-adaptive meshes.
To the best of our knowledge, the atlas model comparison
problem (item 3) has not been addressed before in the litera-
ture, so let us briefly point out the intuition behind our Bayesian
approach (see [23] for an excellent introduction to Bayesian
model comparison). The key observation is that ranking al-
ternative models according to their evidence automatically
and quantitatively safeguards us from using over-parametrized
models that would constitute poor priors. As an example,
consider a model that allows exceedingly flexible deformations
of the atlas. While such a model can be fitted extremely well to
the training data, its evidence, defined as

p(D | H;) = /Gp(D |6, H;)p(6 | H;)do
is very low: because the range of possible outcomes is so large,
the probability of observing exactly the training data D must
be very low. Indeed, it would be quite a coincidence that, if we
drew samples from such an underconstrained model, the results
would happen to look like brains!

Another way to gain insight into how Bayesian model com-
parison works, is to write the evidence down in terms of the
length, measured in bits, of the shortest message that communi-
cates the training data without loss to a receiver when a certain

model H; is used. Following Shannon theory, this length is
—log, p(D | H;); searching for a model that maximizes the
evidence is thus equivalent to trying to discover regularities in
the training data, allowing us to maximally compress it. Note
that nothing is said about encoding at the optimal parameters;
intuitively, these parameter values will need to be encoded
somehow as well, automatically safeguarding against overly
complex models with too many free parameters.

In this paper, we only address the problem of learning, from
manually labeled training data, a prior distribution that makes
predictions about where neuroanatomical labels typically occur
throughout images of new subjects. Once built, such a prior
can be freely mixed and matched with a variety of probabilistic
atlas-based modeling and optimization techniques to obtain au-
tomated segmentations of brain MRI data [1], [2], [4], [5], [9],
[24], [25]. We note that this concept of probabilistic atlases is
different from the one in which structure-specific intensity dis-
tributions are learned simultaneously with the prior as well [7],
[26].

This paper is structured as follows. Section II introduces
our generalized atlas model. In Section III, we describe three
levels of Bayesian inference, derive practical optimizers and
approximations, and interpret the inference problem in terms
of message encoding using binary strings. Sections IV and
V report, respectively, experiments and results on manually
labeled datasets in 2-D. In Section VI, we present experi-
ments of the proposed atlas construction technique in 3-D,
and show the resulting atlases’ potential in fully-automated,
pulse sequence-adaptive segmentation of 36 neuroanatomical
structures. Finally, we relate our approach to existing work and
present a future outlook in Section VII. An early version of this
work was presented in [27].

II. GENERATIVE IMAGE MODEL

The techniques proposed in this paper apply equally well in
the 2-D domain, using triangular atlas mesh representations, as
in the 3-D domain, using tetrahedral meshes. For ease of presen-
tation, we will use triangular meshes throughout the theoretical
sections, keeping in mind that the described procedures have
their direct equivalent in tetrahedral meshes as well.

Let there be M manually labeled images L,,,m =
1,2,...,M. Each image L,, = {l",i = 1,2,...,I} has
a total of I pixels, with I* € {L1,2,...,K} denoting the
one of K possible labels assigned to pixel <. We model these
images (and subsequent ones that are to be analyzed) as being
generated by the following process:

1) First, a triangular mesh covering the whole image domain

is constructed, defined by the position of its N mesh nodes
" ={z,,n=1,2,..., N} and by a simplicial complex
(a collection of points, line segments, and triangles [28])
specifying the mesh connectivity. For the remainder of the
paper, we will refer to " as the reference position of the
mesh.

2) A set of label probabilities a,, = {a},a2,... of}, sat-
isfying af > 0 and ZkK af = 1, is assigned to each
mesh node, defining how frequently each label tends to
occur around that node. In typical probabilistic brain at-
lases, no more than three labels have a nonzero probability
simultaneously at any given location (although these la-
bels vary between locations). Assuming that label proba-
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bilities are assigned to each mesh node independently, and
letting @ = {1, o, ...,ayn} denote the total set of label
probabilities of all mesh nodes, we therefore use the prior
pla) = 1, p(an) with

0, if more than 3 labels have
a nonzero probability
1, otherwise.

?

plan)

3) M deformed atlas meshes are obtained by sampling M
times from a Markov random field (MRF) prior regulating
the position of the mesh nodes!:

U(:I,'|:I:T,1C)>

p(z|B,z",K) x exp <— 3

with

Uz|z",K)=>_ Uf(z|z").

t=1

6]

In (1), UX (x| z") is a penalty for deforming triangle ¢ from
its shape in the reference position ", U(z |z",K) is an
overall deformation penalty obtained by summing the con-
tributions of all 7" triangles in the mesh, and the param-
eter 3 controls the flexibility of the resulting deformation
field prior. In order to insure that the prior is topology pre-
serving, the penalty needs to go to infinity if the Jacobian
determinant of any triangle’s deformation approaches zero.
In this paper, we have used the penalty proposed by Ash-
burner et al. in [21], which has this property; details are
given in Appendix A. Note, however, that other definitions
would also be possible (such as for instance [30]).

4) From each deformed atlas mesh with position £™, a label
image L,, is generated by interpolating the label probabil-
ities at the mesh nodes over the whole image domain, and
sampling from the resulting probabilities. Given a mesh
with position z, the probability of having label £ in a pixel
1 with location z; is modeled by

N
pilklo,z,K) =" k(). 2)
n=1

In (2), ¢,(-) denotes an interpolation basis function at-
tached to mesh node n that has a unity value at the posi-
tion of the mesh node, a zero value at the outward edges
of the triangles connected to the node and beyond, and a
linear variation across the face of each triangle (see Fig. 1).
As a result, the probability of observing a certain label k
is given by the label probabilities o at the mesh nodes,
and varies linearly in between the nodes. To complete our
model, we assume conditional independence of the labels
between pixels given the mesh parameters, so that we have

I
p(L|o,z,K) = [[ pilli |, 2, K) 3)
i=1

for the probability of seeing label image L.

IFor simplicity, we will ignore boundary conditions throughout the theoretical
sections of the paper. Sliding boundary conditions [29] were used, in which
mesh nodes lying on an image edge can only slide along that edge.
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Fig. 1. In the generative model, label probabilities are interpolated from the
probabilities in the mesh nodes using a linear combination of interpolation basis
functions ¢,,( - ). This figure shows the interpolation basis function for one
mesh node: it varies linearly over the face of each triangle attached to the node,
and has only limited, local support.

III. BAYESIAN INFERENCE

A. First Level of Inference

Given manually labeled training data in the form of M
label images L,,,m = 1,2,..., M, we can infer what the
label probabilities and the positions of the mesh nodes in each
of the labelings may be. In a Bayesian setting, assessing the
Maximum A Posteriori (MAP) parameters {é&,z',...,z"}

involves maximizing
M
[[ (L [,2™, K)p(a™ | 8,27, K)lp(e), )
m=1

which is equivalent to minimizing
M
> [~ logp(Lim | e, z™,K) —log p(&™ | B, 2", K)] - log p(a).

m=1

5
We alternately optimize the label probabilities in the mésﬁ

nodes a, keeping the position parameters fixed, and update each
of the positions ™ while keeping the label probabilities fixed.
Optimizing the positions is a registration process, bringing each
of the training samples in spatial correspondence with the cur-
rent atlas. The gradient of (5) with respect to ™" is given in
analytical form through (1) and (2), and we perform this regis-
tration by global gradient descent (although we also use a local
node-by-node optimization in specific circumstances; see later).

Assessing the optimal label probabilities in the mesh nodes
for a given registration of the training samples can be done itera-
tively using an expectation-maximization (EM) algorithm [31].
We initialize the algorithm with label probabilities in which all
labels are equally alike in all mesh nodes. At each iteration, we
then construct a lower bound to (4) that touches (4) at the cur-
rent values of «

rm

M I N Olgn(ﬁm(.'lii) iyn
II|IT1I (Wi,n) p(a™ | 3,57, K) | plew).
m=1 |[i=1n=1 N

(6)
In (6), the weights
" 'm
an ¢ (%)
N [
D=1 O B (i)
associate each pixel in each example with each of the mesh
nodes; note that, due to the limited support of the basis func-
tions ¢7'(-), a pixel’s weights can only be nonzero for the

m _
Wln =
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three mesh-nodes attached to the triangle containing it. Once
the lower bound is constructed, optimizing it with respect to the
label probabilities is straightforward: each node’s label proba-
bilities are obtained as the relative frequency of occurrence of
the labels in the pixels assigned to it%:

D DD S | £ 5lmk
Oén «—
Zm:lZi:l

With these updated label probabilities, a new lower bound is
constructed by recalculating the assignments W, etc., until
convergence. Note that the constraint of maximum three labels
with nonzero probability in each node, as dictated by the prior
p(a), is not explicitly enforced in this algorithm. However, it
is easily verified that this condition is automatically fulfilled in
practice.

Note that traditional “average” atlases are a special case of
the aforementioned EM algorithm: in a regular triangular mesh
with no deformations allowed (i.e., 3 = 0), where there is a
node coinciding exactly with each pixel, the algorithm devolves
into a noniterative process that exclusively assigns each pixel
to its corresponding mesh node only, resulting in a pixel-wise
average of the label images as the MAP estimates for a.

Vn, k.

B. Second Level of Inference

The results of the atlas parameter estimation scheme de-
scribed in Section III-A depend heavily on the choice of the
hyper-parameter (3 regulating the flexibility of the deformation
fields. Having no prior knowledge regarding the “correct”
value of (3, we may assign it a flat prior. Using the Bayesian
framework, we can then assess its MAP value # by maximizing

p(L1,...,La | 8,27, K)
M
= [ [ TI p(Em | B.2", K)) pla)da (1)
@ m=1
where

— [ dLnlas Kp(a" | 5o )

Assuming that p(L,, |a, ™, K)p(z™ | B,z", K) has a peak at
a position 7', we may approximate p(L,, | @, 5,z", K) using
Laplace’s method, i.e., by locally approximating the integrand
by an unnormalized Gaussian. Ignoring interdependencies be-
tween neighboring mesh nodes in the Gaussian’s covariance
matrix, and approximating the prior p(z™ | 8, z", K) using the
pseudo-likelihood approximation [32] and a local Laplace ap-
proximation in each node, we obtain3 (see Appendix B; an il-
lustration is shown in Fig. 2)

(L |, B,2",K) ~

p(Lm |a>-";:yn7 ’C

N
) - [[or ®
n=1

2Here, 6. ; denotes the Kronecker delta.
3Here, Dg denotes a matrix of second derivatives, or Hessian.

with

m r _ m|n r
O™ = oxp (_U(za |27, K) ﬁU(za |z,;c))

det(J™)
det(I™)

where

DZ [-logp(Lm |, z,K)
- 1ng($ | /87 zrv K:)”m:z?
and

le = Dz:n[_ 1ng($ | ﬁ?z.T?IC)] |a: zm‘"‘

Here, <. In denotes the set of mesh positions that is identical
to x]' except for the position of node n, which is replaced by
the position that maximizes the prior p(z | 8, z", K) when the
positions of all other mesh nodes are fixed to their value in z))
Note that calculating this optimal node position, as well as eval-
uating the factors O], only involves those triangles that are di-
rectly attached to the node under investigation; we use a Leven-
berg—Marquardt algorithm to carry out the actual optimization.

Plugging (8) into (7), and approximating the factors Oy by
their values at & = &, denoted by O;", we obtain

p(L17 R 7L]M |/H7$T7 IC)
N M
~ H H o / (H p(Lm |a,:im,lC)> p(a)da.
@ \m=1

m=1n=1
The remaining integral cannot, in general, be obtained analyt-
ically. To sidestep this difficulty, we replace p(L,, | a, ™, K)
by the lower bound

I " W,
Hnﬁm”ﬂ
1=1 n=1

used in the EM algorithm of Section III-A, which touches
p(Lm | @, 2™, K) at the optimal label probabilities &. Taking
into account the prior p(a), which only allows nonzero prob-
abilities for three labels simultaneously in each node but is
otherwise flat, and using Stirling’s approximation for the
Gamma function I'(z + 1) ~ x%e~*, we finally obtain (see
Appendix C)

P(Lh--uLMW#C K)

N M
~ H H@g.ﬂfgn. 1 p(Lmlé.2™.K) ©
m=1n= n=1 m=1

with

b - (K) 2T(N, + 1)

" \3) T(N,+3)

B 12
(K —2)(K = 1)K(N,, + 1)(N,, +2)
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Fig. 2. The probability of seeing a label image L (b) given an atlas in its reference position (a) is obtained by multiplying the probability of seeing the label
image given the optimally deformed atlas (c) with a factor with magnitude less than one, which is a penalty for not actually knowing the deformation field. In
the illustration of the atlases, white and black indicate a white matter probability of 1 and 0, respectively. We approximate the penalty factor for not knowing the
optimal deformation field by a product of local penalties O,,, one for each mesh node n. Images (d) and (e) illustrate how this local penalty factor is calculated for
the node indicated with number 1 and 2 in images (b) and (c), respectively. The top rows in (d) and (e) provide a magnified view of the local neighborhood around
the node under investigation in the label image and the deformed atlas. The left and right images in the middle rows show respectively the prior (before any data
is seen) and the posterior (after the data in the top left arrives) distributions of the location of the mesh node. Here, dark indicates high probability density values.
Finally, the bottom rows show Gaussian approximations to the priors and posteriors of the middle rows that are used to actually calculate the penalty factors. Each
node’s penalty factor essentially quantifies the difference between the prior and the posterior, by comparing each distribution’s MRF energy at the optimal mesh
node location and the spread of its Gaussian approximation (see text). As a result, the node shown in (d) incurs a much higher penalty (O,, < 1) than the node of
(e) (0., = 1) for not knowing its optimal location. Stated from a data compression point of view, encoding the position of the mesh node requires a high number
of bits — log, O,, in (d), but &0 bits in (e). This reflects the fact that, in contrast to the situation in (e), the position of the node in (d) must be encoded with high
precision, because small deviations from its optimal value will result in a large increase in the number of bits required to subsequently encode the labels [top left
of (d)]. Note that in reality, the label probabilities in each mesh node are not known either, which gives rise to another penalty factor 1,, in each node (see text).

where N, = Z%:l Zle W[’; denotes the total number C. Third Level of Inference

of pixels associated with node n at the MAP parameters

{a, ... ,iM}. Equipped with (9), the MAP estimate [3 can We have assumed so far that the connectivity K and the
be assessed using a line search algorithm (see later). reference position " of the atlas mesh are known beforehand.
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Using the Bayesian framework, however, we can assign ob-
jective preferences to alternative models. Having no a priori
reason to prefer one model over the other, we can rank al-
ternatives based on their likelihood p(L, ..., Ly |z",K) =

mated, using Laplace’s method, by

(\/ﬂ »(B) /\/%[_ log p(L1 ... L \,@,zr,;c)nﬂ:S)

Since changes in the first factor are overwhelmed by changes
in the second one, we will ignore the first factor and compare
alternative models based on (9), evaluated at the MAP estimate

3.

D. Description Length Interpretation

Given that we use (9) both to assess the optimal deformation
field flexibility and optimal mesh representations, it is instruc-
tive to write it down in terms of the bit length of the shortest
message that communicates the training data without loss to a
receiver when a certain model is used. Taking the binary loga-
rithm, negating, and rearranging terms, we have

N R M N ) M
= logy Ru=> Y logy 07— " logyp(Lm | &, 2™, K).
n=1 m=1

m=1n=1

According to the three terms, such a message can be imag-
ined as being subdivided into three blocks. Prior to starting the
communication, the transmitter estimates the MAP estimates
{&,:i:l, .. ,:i:M} as laid out in Section III-A. It then sends a
message block that encodes the label probabilities in each mesh
node (first term). Subsequently, a message block is sent that en-
codes, for each label image, the position of each mesh node
(second term). Finally, the actual data can be encoded using the
model at the MAP parameter estimates (third term). From this
interpretation, it is clear that finding good models involves bal-
ancing the number of bits required to encode the parameters of
the model with the number of bits required to encode the training
data once those model parameters are known. Overly complex
models, while providing a short description of the training data,
require an overly lengthy description of their parameters and are
automatically penalized.

IV. EXPERIMENTS

A. Training Data

We evaluated the performance of competing atlas models
on 2-D training data, derived from manual annotations that are
publicly available at the Internet Brain Segmentation Repos-
itory (IBSR) [33]. A first dataset consists of corresponding
coronal slices in 18 subjects with delineations of white matter,
cerebral cortex, lateral ventricle, caudate, putamen, and accum-
bens area in both hemispheres (see Fig. 4). Axial slices of the
same subjects, containing manual labels of global white matter,
gray matter, CSF, and background, constitute a second training
dataset (available as supplementary material at http://ieeex-
plore.ieee.org). Both datasets were obtained by coregistering
the annotated volumes of all subjects to the first subject using
a 3-D affine registration algorithm [34] and resampling using

Fig. 3. A mesh can be simplified by unifying two adjacent mesh nodes into a
single node using a so-called edge collapse operation.

nearest-neighbor interpolation. The image size of all 2-D slices
was 161 x 145.

B. Atlas Construction and Comparison

The description length allows us to compare different atlas
models in light of the data. On both training datasets, we com-
pared the following models.

¢ Full-resolution, nondeformable atlases. Here, no defor-
mation is allowed (5 = 0), and the atlas mesh is defined
on a regular, high-resolution mesh in which each node co-
incides exactly with the corresponding pixel centers in the
training data. This corresponds to the standard notion of
probabilistic atlases.

* Optimal-resolution, nondeformable atlases. This is sim-
ilar to standard probabilistic atlases, except that the resolu-
tion of the regular mesh is reduced, so that each triangle in
the mesh stretches over a number of pixels in the training
data.

» Content-adaptive, nondeformable atlases. Again, no de-
formations are allowed (3 = 0), but the mesh nodes are
placed strategically so as to obtain a maximally concise
representation (see below).

* Content-adaptive, optimally-deformable atlases. In ad-
dition to seeking the optimal mesh representation, the op-
timal deformation flexibility 3 is explicitly assessed as
well.

The latter atlas model involves a joint estimation of both the
optimal deformation flexibility and the optimal mesh connec-
tivity, which poses a very challenging optimization problem. For
our experiments, we have used the following three-step scheme,
which is in no way optimal but which yields useful answers in
a practically feasible fashion.

First, the model parameters of a high-resolution, regular
mesh-based atlas were estimated for a given, fixed value of
the deformation flexibility, using the scheme described in Sec-
tion IT1I-A (6 = 10 was used in our experiments). The parameter
estimation proceeded in a four-level multiresolution fashion, in
which first a low-resolution mesh was fitted, which was then
upsampled and fitted again, etc., until the mesh reached the full
resolution of the training data.

Second, a mesh simplification procedure [35], [36] was
employed that repeatedly visits each edge in the mesh at
random, and compares the effect on the description length of
either keeping the edge while optimizing the reference position
of the two nodes attached to it, or collapsing the edge and
optimizing the reference position of the resulting unified node
(see Fig. 3). The optimization of the reference positions of the
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Fig. 4. First training dataset: corresponding coronal slices with 13 labels in 18 subjects. Only the data of the first three subjects are shown.

mesh nodes was performed using Powell’s direction set [37],
involving for each trial reference position an inner optimization
of the atlas’ label probabilities and deformations as described
in Section III-A. Since each edge operation tends to change
the resulting atlas only locally, this inner optimization was
restricted to a small area around the edge under investigation:
only the model parameters in the nodes directly affected were
updated in the experiments reported here.

Finally, the optimal 3 was assessed for the resulting con-
tent-adaptive, deformable atlas using a line search. For each
trial value for 3, the atlas model was refitted according to Sec-
tion III-A, and the description length was evaluated. Since it is
imperative that the atlas model parameters are optimized prop-
erly in order to accurately reflect the effect of small changes in 3
on the resulting description length, the global gradient-descent
registration component of Section III-A was replaced by an Iter-
ated conditional modes (ICMs) scheme [38], in which all nodes
in each of the training images are repeatedly visited, and in-
dividually optimized using a Levenberg—Marquardt algorithm,
keeping the position of all other nodes fixed.

The atlas encoding scheme took 14 h for each training dataset
on an AMD Opteron 275 processor, with almost all time con-
sumed by the mesh simplification step. For the content-adaptive,
nondeformable atlas meshes, the same mesh simplification pro-
cedure was used as in the deformable case, but it was much less
computationally demanding there as the inner optimization is
only over the atlas label probabilities: the mesh node positions
in each training dataset can simply be copied from the reference
positions.

C. Visualization of the Results

In addition to quantitatively evaluating competing atlas
models by comparing their message length, we can also explore
what aspects of the data they have actually captured by syn-
thesizing samples from the probability distributions that they
describe. Following the generative image model of Section II,
generating samples involves sampling from the deformation
field model, interpolating the deformed atlases at the pixel
locations, and assigning an anatomical label to each pixel
accordingly. We sampled from our deformation field model
using a Markov Chain Monte Carlo (MCMC) technique known
as the Hamiltonian Monte Carlo method [39], which is more

efficient than traditional Metropolis schemes because it uses
gradient information to reduce random walk behavior [23]. In
a nutshell, the method generates samples from our MRF prior
by iteratively assigning an artificial, random momentum to
each mesh node, and simulating the dynamics of the resulting
system for a certain amount of time, where the MRF energy
acts as an internal force on the mesh nodes.

V. RESULTS

Results for the first training dataset (Fig. 4) are presented
in Figs. 5-7. Results for the second dataset are qualita-
tively similar, and are available as supplementary material at
http://ieeexplore.ieee.org.

Considering the first training dataset, Fig. 5(a) shows the
full-resolution, nondeformable atlas built from the 18 training
images. The figure also contains a schematic representation
of the data encoding message. Since no deformations are
involved, only the label probabilities in each pixel location
and the residual data uncertainty need to be encoded (former
and latter message block, respectively). In absolute terms,
the message length is =549 kbits; this should be compared
to a literal description of the data in which the one out of 13
possible labels in each of the 161 x 145 pixels in the 18 training
images is described by log,(13) bits, yielding a message
length of ~1.482 Mb. In other words, the probabilistic atlas
representation clearly captures some of the regularities in the
training data, allowing it to be compressed by approximately
64% compared to when the pixel labels are assumed to be
completely random. Nevertheless, the majority of the bits are
spent encoding the model parameters, in this case the label
probabilities. This indicates that we may be overfitting the
training data, limiting the atlas’ ability to predict unseen cases.

If we gradually increase the distance between the mesh nodes
in both directions, we obtain increasingly sparse mesh represen-
tations in which the number of bits spent encoding the model
parameters decreases, at the expense of longer data encoding
blocks [see Fig. 6(a)]. The optimal distance between the mesh
nodes, yielding the shortest overall message length, is around
5.5 times the pixel distance, resulting in a mesh with approx-
imately 30 times less nodes than the full-resolution atlas. The
resulting optimal-resolution, nondeformable atlas is depicted
in Fig. 5(b); its message length is around 42% of that of the
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]

(©)

(d)

Fig. 5. Competing atlas models constructed from the first training dataset (see Fig. 4): full-resolution, nondeformable atlas (a), optimal-resolution, nonde-
formable atlas (b), content-adaptive, nondeformable atlas (c), and content-adaptive, optimally-deformable atlas (d). Also shown is the optimal-resolution,
nondeformable atlas constructed using only 3 out of the 18 training images (e), which should be compared to (b). White and black indicate a white matter
probability of 1 and 0, respectively. The right side of the brain has been color-coded in the atlases for visualization purposes. Under each atlas (a)—(d) is
depicted a schematic view of the shortest message that encodes the training data: dark gray indicates the label probabilities message block, intermediate gray
represents the node position message block, and light gray stands for the data message block. All message lengths are represented relative to the message
length of the full-resolution, nondeformable atlas [image (a)], which in itself already provides a 64 % compression rate (see text for more details).

full-resolution atlas. Note that the lower mesh resolution neces-
sarily introduces a certain amount of blur in the resulting atlas,
thereby improving its generalization ability.

At this point, we may wonder how the optimal mesh res-
olution is affected when the number of training images used
to build the atlas is altered. Intuitively, the risk of overfitting
is higher when less training data is available, and the optimal
mesh resolution should go down accordingly. We can verify
that this is indeed the case: Fig. 5(e) shows the optimal-reso-
lution atlas when only 3 training images are used, as opposed
to 18. Compared to the atlas of Fig. 5(b), the number of mesh
nodes is further decreased by another 47%. Note that using a
lower mesh resolution is akin to increasing the amount of blur
in the resulting atlas; Bayesian inference thus automatically and
quantitatively determines the “correct” amount of blurring that
should be applied.

Returning back to 18 training images, Fig. 5(c) shows the
content-adaptive, nondeformable atlas along with its message
length representation. Compared to the case where the topology

of the mesh was forced to be regular [Fig. 5(b)], allowing the
mesh nodes to be placed strategically decreases the message
length further by 10%. Note that the amount of blur is now
nonuniformly distributed, occurring mainly in areas with large
intersubject anatomical variability as these areas are most sus-
ceptible to model overfitting.

Finally, Fig. 5(d) depicts the content-adaptive, optimally-de-
formable atlas along with its message representation. In contrast
to the previous models, in which no deformations were allowed,
the positions of the mesh nodes in each of the training images
differ from their reference positions, and therefore need to be
explicitly encoded as well. The variation in length of the three
message blocks for increasing values of [, starting at 3 = 10,
is shown in Fig. 6(b). As expected, the number of bits needed to
encode the label probabilities is independent of the deformation
flexibility. However, the data message block decreases and the
mesh node position block increases for increasingly flexible de-
formation field models: knowledge about the anatomical labels
in the individual training images is effectively transferred into
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x 105 Optimization of mesh resolution 4 Optimization of deformation flexibility (5)

Description length (bits)
Description length {bits)

1 2
2 9 6 8 10 12 14 16 10 10

Downsampling factor in each direction Deformation flexibility ()
(2) ®)

Fig. 6. Optimization of the mesh resolution in regular, nondeformable meshes (a) and the parameter controlling the deformation flexibility of content-adaptive
atlases (b) for the first training dataset. The overall message length encoding the training data, as well as the lengths of the constituent message blocks, changes

when the parameter of interest varies; the optimum is found at the shortest overall message length. The message blocks are depicted using the same color scheme
as in Fig. 5.

(b)

Fig. 7. Samples synthesized using the optimal-resolution, nondeformable atlas (a) and the content-adaptive, optimally-deformable atlas (b) trained on the first

dataset. The right half of the underlying mesh is overlaid on top of the samples in order to visualize the applied deformations. A supplementary animation of more
samples is available at http://ieeexplore.ieee.org.

the deformation fields as the training data are better aligned and To conclude, we show in Fig. 7(a) and (b) some samples
the atlas gets sharper. synthesized from the optimal-resolution, nondeformable atlas
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model and the content-adaptive, optimally-deformable atlas
model, respectively. It is obvious that the latter model has
indeed captured the characteristics of the training data better,
explaining its higher compression rates.

VI. APPLICATION IN 3-D

We here present experiments of the proposed atlas construc-
tion technique in 3-D, and show the resulting atlases’ potential
in fully-automated, pulse sequence-adaptive segmentation of 36
neuroanatomical structures in brain MRI scans. Additional re-
sults of the proposed techniques can be found in a recent paper
on automated segmentation of the subfields of the hippocampus
in ultra-high resolution MRI scans [40].

A. Atlas Construction in 3-D

Fig. 8 shows the content-adaptive, optimally-deformable
atlas constructed from 3-D manual annotations in four ran-
domly chosen subjects of the IBSR dataset. In these images,
each voxel in the entire brain is labeled as one of 36 neu-
roanatomical structures, including left and right caudate,
putamen, pallidum, thalamus, lateral ventricles, hippocampus,
amygdala, cerebral, and cerebellar white matter and cortex, and
the brain stem. Prior to the atlas computation, the images were
coregistered and resampled using the procedure described in
Section IV-A, resulting in images of size 177 x 164 x 128.

The employed atlas construction procedure was entirely anal-
ogous to the one used in the 2-D case, but using tetrahedral
rather than triangular meshes and with the following computa-
tional speedups.

e The distance between the nodes in the high-resolution
mesh from which the edge collapse operations start, was
three times the distance between the voxel centers.

* In the multiresolution approach used to obtain the high-res-
olution mesh, tethrahedra covering only background were
not further subdivided, resulting in less edges to collapse
later on.

* The mesh collapse operations were based only on evalu-
ating the sum of the label probabilities message length and
the data message length, since the node position message
length was observed to have negligible impact on the mesh
simplification, and its calculation in 3-D was rather slow in
our implementation.

* The code was multithreaded, using multiple processors
simultaneously.

It took 34 h to compute the atlas shown in Fig. 8 on a machine
with two dual-core Intel Xeon 5140 processors. The computa-
tional burden scales essentially linearly with the number of sub-
jects in the training set: computing an atlas from 10 subjects on
the same machine increased the computation time to 101 h.

B. Sequence-Adaptive Whole Brain Segmentation

As an example of the potential usage of the proposed atlas
models, we here describe a Bayesian method for sequence-adap-
tive segmentation of 36 brain structures using the tetrahedral

Fig. 8. Optimal tetrahedral mesh-based atlas in 3-D, built from manual annota-
tions of 36 neuroanatomical structures in four subjects. The prior probabilities
for the different structures have been color-coded for visualization purposes.
The edges of the tetrahedra are shown in red, and the intersections of the faces
of the tetrahedra with a cutting plane used for visualization in green.

atlas of Fig. 8. Building on our earlier work [41], [1], we supple-
ment the prior distribution provided by the atlas, which models
the generation of images where each voxel is assigned a unique
neuroanatomical label, with a likelihood distribution that pre-
dicts how such label images translate into MRI images, where
each voxel has an intensity. Together these distributions form a
complete computational model of MRI image formation that we
use to obtain fully automated segmentations. While the method
described here only segments uni-spectral images, extending it
to handle multispectral data is straightforward [41].

1) Prior: Once the optimal atlas model and its param-
eters have been learned from manually annotated training
data, the probability of seeing a label image L is given by
p(L|é&,z,K) = Hle pi(li | &, z,K) (3), where the position
of the mesh nodes z is governed by p(z|/3’,:ir,l€) (1). To
simplify notation, we will drop the explicit dependency on the
learned a, B,ﬁr, and K in the remainder, and simply write
p(L|x) = [[_, pi(l; | =) and p(z) instead.

2) Likelihood: For the likelihood distribution, we employ a
model according to which a Gaussian distribution with mean
1k and variance a,% is associated with each label £. In order to
account for the smoothly varying intensity inhomogeneities or
“bias fields” that typically corrupt MR images, we also explic-
itly model the bias field as a linear combination Zf=1 [CRVNE
of P polynomial basis functions ¥, ( - ). Given label image L,
an intensity image Y = {y;,7 = 1,...,T} is generated by
first drawing the intensity in each voxel independently from the
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Gaussian distribution associated with its label, and then adding*
the local bias field value

p(Y|L,0)
= Hpi (vi l s o {ep})
Lo (_ (yi =, = iy Cpq’p(zi))Q)

= exp 5
i1 27r0127_ 20; i

Here, the likelihood distribution parameters

0 = {{pk},{0}},{cp}} are the means and variances

of the Gaussian distributions, as well as the parameters of the
bias field model. To complete the model, we specify a uniform
prior distribution on these parameters

p(#) x 1.

3) Model Parameter Estimation: With the complete genera-
tive model in place, Bayesian image segmentation can proceed
by first assessing the parameter values {%, 9} that are most prob-
able in light of the data. We maximize

p(z,0|Y) o< p(Y |z, 0)p(x)p(9)
I K
x (H > pilyi | s o {ep}pilk Iz)) p(=)
=1 k=1

which is equivalent to minimizing

I K
> (—log [Zpi(yi Iuk70i7{cp})pi(klx)D

i=1 k=1

—logp(z) (10)
using a generalized expectation-maximization (GEM) algo-
rithm [31]. We repeatedly calculate a statistical classification
that associates each voxel with each of the neuroanatomical
labels

o — _ Pilyilme, of {cpDpi(k| =)
e il o {ep i (K | )

and subsequently use this classification to construct an upper
bound to (10) that touches it at the current parameter estimates

! s i\Yi k70137 Cp Lk A Qf
;(_bg[r[(“y'“ Q{ Dpi(k | >> D

k=1

—logp(x). (11)

For a given position of the mesh nodes x, we previously derived
closed-form updates for the likelihood distribution parameters
0 that either improve the upper bound—and thus the objective
function—or leave it unchanged [41]. After updating @ this way,
the classification and the corresponding upper bound are recal-
culated, and the estimation of # is repeated, until convergence.
We then recalculate the upper bound, and optimize it with re-
spect to the mesh node positions z, keeping @ fixed. Optimizing
4Since MR field inhomogeneities are usually assumed multiplicative, we

work with logarithmically transformed intensities, rather than with the original
image intensities.
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x is a registration process that deforms the atlas mesh towards
the current classification, similar to the schemes proposed in [7],
[8]. We perform this registration by gradient descent, using the
fact that the gradient of (11) with respect to z is given in analyt-
ical form. Subsequently, we repeat the optimization of  and z,
each in turn, until convergence.

4) Image Segmentation: Once we have an estimate of
the optimal model parameters {#, 6}, we use it to as-
sess the most probable anatomical labeling. Approxi-
mating p(L|Y) = [ [pp(L]|Y.z,0)p(z,0|Y)dzdd by
p(L|Y,%,0) < p(Y | L,0)p(L| ), we have

A

L =arg mgxp(L |Y)
I

max 1:[17 (yi | fu,. 67, {ép}) pi(li | &)

~ arg
{lii=1,...,

which is obtained by assigning each voxel to the label with the
highest posterior probability, i.e., I; = arg maxj, QF.

5) Results: Fig. 9 shows the segmentation results of the pro-
posed algorithm on a high-resolution T1- and T2-weighted scan
of two different subjects. The method required no other pre-
processing than affinely coregistering the atlas with each image
under study [34], and took 25 min computation time on a Intel
Core 2 T7600 processor for each subject. Note that the method
does not make any assumptions about the MRI scanning pro-
tocol used to acquire the images, and is able to automatically
adapt to the tissue contrast at hand. While this type of sequence-
adaptiveness is now well-established in methods aiming at seg-
menting the major brain tissue classes [1], [4], [42], [43], this
is not the case in state-of-the-art methods for segmenting brain
substructures, which typically require that all images to be seg-
mented are acquired with a specific image acquisition protocol
[71, [26], [44], [45].

A detailed validation of the whole brain segmentation tech-
nique proposed here, evaluating the effects on segmentation ac-
curacy of the used pulse sequence(s) and the number of subjects
included in the atlas, is outside the scope of this paper and will
be published elsewhere.

VII. DISCUSSION AND OUTLOOK

In this paper, we addressed the problem of creating proba-
bilistic brain atlases from manually labeled training data. We
formulated the atlas construction problem in a Bayesian con-
text, generalizing the generative model implicitly underlying
standard average atlases, and comparing alternative models in
order to select better representations. We demonstrated, using
2-D training datasets, that this allows us to obtain models that
are better at capturing the structure in the training data than con-
ventional probabilistic atlases. We also illustrated, in 3-D, the
resulting atlases’ potential in sequence-adaptive segmentation
of a multitude of brain substructures.

A. Connection to Group-Wise Registration

We described three levels of inference for atlas computation.
At the first level, we use an a priori specified model, and infer
what values its model parameters may take, given the training
data. This naturally leads to a so-called group-wise registration
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Fig. 9. Application of the atlas of Fig. 8 for sequence-adaptive segmentation
of 36 neuroanatomical structures. Results are shown for a high-resolution
T1-weighted (top) and a T2-weighted (bottom) brain scan of two different
subjects.

algorithm, in which all training datasets are simultaneously
aligned with a “average” template that is automatically esti-
mated during the process as well. Similar to existing approaches
[16]-[22], the geometry of this average atlas is unbiased in that
it represents a central tendency among all training datasets,
without being affected by the choice of one “representative”
dataset in particular.

Our first level of inference differs from other group-wise reg-
istration approaches in that the intrinsic coordinate system of
the average template is not defined on a regular, high-resolu-
tion image grid, as is typically done, but rather on a mesh-based
representation in which triangular (or, in 3-D, tetrahedral) ele-
ments stretch over a potentially large number of pixels (voxels).
This has the implication that an explicit model of the interpo-
lation process is needed, resulting in an iterative algorithm to
accurately determine the association of individual pixels with
the mesh nodes. In contrast, interpolation can generally be con-
sidered a minor issue when dense image grid representations are
used, and is typically addressed using simpler, ad hoc schemes.

Our goodness-of-fit criterion, measuring the likelihood of a
given set of label probabilities and deformation fields, is closely
related to the criterion used in congealing approaches [46]. Con-
gealing, when applied to group-wise registration [14], [16], as-
sesses how well a set of spatial transformations aligns a group of

images by calculating the sum of voxel-wise entropies. Disre-
garding interpolation issues and the variable numbers of voxels
associated with each mesh node in our model, it is clear that
such a sum of entropies is proportional to our likelihood, eval-
uated at the optimal label probabilities for a given set of de-
formations. In other words, congealing essentially amounts to a
different optimization strategy, in which the joint search space
over label probabilities and deformation fields is collapsed into
the lower-dimensional space of deformations only, optimizing
the label probabilities out for each set of deformations.

To the best of our knowledge, only two other groups have
attempted to construct probabilistic atlases from annotated
images while simultaneously aligning these images using
deformable registration. De Craene et al. [11] employed a
generative image model in which differences between label
images in a training dataset are explained as a combination of
deformations and voxel-wise label errors applied to an under-
lying label image that is shared across all training images [47].
Lorenzen et al. [12] constructed an atlas from probabilistic
segmentations of brain MR images by minimizing, in each
voxel, the Kullback—Leibler distance of the atlas from the prob-
abilistic segmentations. But the atlases obtained by Lorenzen et
al. and De Craene et al. are a normalized voxel-wise geometric
mean over the training datasets, whereas standard probabilistic
atlases are calculated as the arithmetic mean. For this reason,
these atlases exhibit overly sharp boundaries between struc-
tures, and their usefulness as a probabilistic prior in automated
segmentation algorithms is therefore questionable.5 In contrast,
our approach is a true generalization of standard probabilistic
atlases, based on a generative image model that directly justifies
its interpretation as a segmentation prior.

While our first level of inference, similar to other group-wise
registration algorithms, jointly optimizes over the average atlas
representation and the deformation fields warping it to each of
the training images, this results in atlases that are generally bi-
ased, as one reviewer pointed out. Indeed, the correct procedure
would be to integrate over the possible deformation fields when
assessing the optimal label probabilities, rather than to optimize
over them, but unfortunately this ideal approach is computation-
ally unfeasible.6

B. Learning the Deformation Field Model

Our second level of inference assesses the most likely flex-
ibility of the deformation field model, given the training data.
Using the equivalence between negative log-likelihood and
code-length, we showed how this estimation problem can be
approximated as a data compression problem that is intuitive to
interpret and computationally feasible.

Assessing the flexibility of our deformation model amounts
to learning the high-dimensional probability density function
(PDF) governing the deformation fields, a problem that has
been approached by others in a markedly different way. In
[49]-[52], deformation field PDFs were estimated from a
number of example deformation fields assumed available for
training; these training deformation fields were obtained using

SInterestingly, the Kullback-Leibler distance is not symmetric; if Lorenzen
et al. had swapped the role of their model parameters and the data in their good-
ness-of-fit criterion, they would have obtained an arithmetic mean in a most
natural manner.

6See also [48] for a related observation in a different context.
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an automated registration algorithm. This inevitably leads to
a “chicken and egg” situation, because the generated training
samples depend on the deformation field prior used in the
registration process, but estimating this prior is exactly the
objective [21]. This problem ultimately arises from the lack of
notion of optimality for deformations aligning brain scans of
different individuals: it is not immediately clear how competing
priors should be compared. We are not confronted with this
difficulty because, rather than trying to estimate a PDF that
describes “true” or physically plausible deformation fields, our
goal is to model pixelated, manually-labeled example segmen-
tations, which is objectively quantified by the description length
criterion. Note that, in contrast to [49]-[52], we do not train
our model directly on a set of deformation fields: the explicit
calculation of deformation fields in our approach only arises as
a mathematical means to approximate our objective function.

C. Content-Adaptive Mesh Representation

At our third level of inference, we compare competing mesh
representations by evaluating how compactly they encode the
training data. This allows us to determine the optimal resolu-
tion of regular meshes for a given training dataset, automati-
cally avoiding overfitting and ensuring that the resulting atlases
are sufficiently blurry to generalize to unseen cases. It also al-
lows us to construct content-adaptive meshes, in which certain
areas have a much higher density of mesh nodes than others.
When this is combined with a deformation model, large areas
that cover the same anatomical label and that exhibit relatively
smooth boundaries, such as the ventricles and deep gray matter
structures, can be fully represented by a set of mesh nodes lo-
cated along their boundaries [see Fig. 5(d)]. In this sense, our
representation can be related to statistical shape models (for
instance, [53]-[55]), in which objects are described by their
boundaries alone.” In contrast to such shape models, however,
our approach also allows areas in which shape characteristics
fluctuate widely between individuals, such as cortical areas, to
be encoded by a “blurry” probabilistic representation, rather
than by explicitly describing the convoluted details of each in-
dividual’s label boundaries. Which of these two representations
is most advantageous in each brain area is automatically deter-
mined by comparing their respective code lengths during the
mesh simplification procedure.

While the construction of our content-adaptive meshes may
seem prohibitively time consuming, especially when the tech-
nique is applied in 3-D, we do not consider this a liability. Man-
ually outlining dozens of structures in volumetric brain scans
is notoriously time consuming, requiring up to one week for
a single scan [26]. In this light, thoroughly analyzing the re-
sulting training data using ubiquitous and increasingly pow-
erful computing hardware is unlikely to be a bottleneck. Further-
more, computation time spent constructing sparse atlas repre-
sentations, which only needs to be done once for a given training
dataset, can significantly save computation time in segmentation
algorithms warping the resulting atlases, potentially benefitting
the analysis of thousands of images. Reducing the dimension-
ality of warping problems by eliminated superfluous degrees of

7Although our deformation model, with its single parameter, is obviously no
match for sophisticated shape models; see also later.
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freedom, while only an accidental by-product of our atlas en-
coding approach, is a valuable goal in itself in medical image
registration [56], [57].

D. Difficulties in Validation

The goal of our atlas construction work is to provide auto-
mated brain MRI segmentation techniques with priors that en-
code the normal anatomical variability in the population under
study as accurately as possible. As such, the ultimate test of the
atlases we generate would be to check how well they predict
brain delineations in subjects not included in the training data-
base. A typical way to do this would be so-called leave-one-out
cross-validation: a single subject is removed from the training
set, an atlas is computed from the remaining subjects, and the
probability with which the resulting atlas predicts the left-out
subject is evaluated; this process is then repeated for all sub-
jects, and the results are averaged.

Unfortunately, we have not been able to perform such a
cross-validation because of practical difficulties. A first ob-
stacle arises from the fact that our atlases are deformable:
evaluating the probability of observing a given label image
involves integrating over all possible atlas deformations. In
theory, such a problem can be numerically approximated using
Monte Carlo techniques,® by drawing enough samples from
the deformation field prior, and averaging the probabilities of
observing the data under each of the deformations. In practice,
however, such an approach does not provide useful answers in
a high-dimensional problem as ours, as none of the samples
that can be generated in a practical amount of time will provide
a reasonable alignment to the validation data. We, therefore,
experimented with annealed importance sampling (AIS) [58], a
technique that addresses this issue by building a smooth transi-
tion path of intermediate distributions between the prior and the
posterior, and collating the results of sampling measurements
collected while proceeding through the chain of distributions.
In our implementation, the intermediate distributions were ob-
tained by applying a varying degree of spatial smoothing to our
atlases. Unfortunately, we were not able to obtain sound results
with this technique as the contributions of the distributions
close to the posterior proved to be especially hard to estimate
reliably.

A second problem is that manual annotations typically con-
tain a number of small spots with a different label than the one
expected at the corresponding location, such as isolated strands
of background label in the middle of the brain (see Fig. 4). Such
spots preclude a validation of even our procedure to assess the
optimal resolution of regular meshes, as their probability of oc-
currence is technically zero under atlases constructed over a
wide range of mesh resolutions. The underlying problem is that
we use the optimal values of the label probability parameters
after training only, whereas a full Bayesian treatment would use
the ensemble of all 1abel probability values, each weighed by its
posterior under the training data. Such a model would not assign
a zero probability to validation datasets, but deriving it in prac-
tice is greatly complicated by our interpolation model and by
our prior, and we have therefore not pursued this option further.

80f course, deterministic approximations such as the Laplace approximation
used earlier are also possible, but evaluating these approximations is exactly part
of the objective here.
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E. Outlook and Future Work

The generalized probabilistic atlas model proposed in this
paper is not beyond improvement. In particular, our deforma-
tion field model has only one single parameter: the deformation
field flexibility. While such nonspecific models are the norm in
the field of nonrigid registration and lie at the heart of some of
the most advanced brain MRI segmentation techniques avail-
able to date [6], more powerful deformation models can be con-
structed if they have more parameters to be trained [49]-[52].
More extensive parametrizations, regulating different aspects of
deformation in individual triangles (or, in 3-D, tetrahedra) or in
triangles sharing the same anatomical labels, is an option we
plan to explore in the future. Provided that the bits needed to
encode them are not ignored (as we have done here for our flex-
ibility parameter), the appropriateness of adding such extra pa-
rameters can be directly evaluated using the code length crite-
rion. More generally, alternative models of deformation, such
as those based on the large deformation or diffeomorphic frame-
work [59], [60], as opposed to the small deformation setting [61]
used here, can be tried and compared by evaluating their respec-
tive code lengths.

While this paper concentrated on building priors from man-
ually labeled training data, we also demonstrated the potential
usage of the resulting atlases in sequence-adaptive segmenta-
tion of dozens of neuroanatomical structures in MRI scans of
the head. Further developing the proposed technique and care-
fully evaluating its segmentation performance will be the focus
of our future research.

APPENDIX A
DEFORMATION FIELD PENALTY

The prior proposed by Ashburner et al. [21] is defined as fol-
lows in 2-D (the 3-D case is analog). Let x ; = (uj ;,v} ;) and
x:; = (ug,j,vs;) denote the position of the jth corner of tri-
angle ¢ in the mesh at reference position and after deformation,
respectively. The affine mapping of the triangle M is then ob-
tain by

mi1 Mmi2 113
M= | ma1 M2 ma3
| 0 0 1
r r r r -1
U1 U2 U3 Upgp Upo Ups
= |[v1 V2 U3 Vi1 Uio  Upg
| 1 1 1 1 1 1

The Jacobian matrix J of this mapping, given by
J= {mu mi2 }
m21  Ma22
can be decomposed into two rotations U and V and a diagonal

matrix S, using a singular value decomposition (SVD): J =
USVT, where

Ashburner’s penalty for each triangle is based on its area and on
the singular values s; and so, which represent relative stretching
in orthogonal directions:

(1+Hsz> 2 s2+1/s7 —2)

where A} denotes the area of the triangle in the reference posi-
tion. This can be conveniently calculated without performing a
SVD as

Ui (z]s") =

U (z|a") = A7 - L+ 1) - (13- A+ 1/171%) - 4) .

APPENDIX B
INTEGRATING OVER x

We here derive the approximation used to obtain (8). As-
suming that p(L,, | a, ™, K)p(z™ | B,z",K) has a peak at a
position z}', we may approximate p(L,, |a, 3,z",K) using
Laplace’s method, i.e., by locally approximating the integrand
by an unnormalized Gaussian

(Lo |0, B, 5", K)
= / (L |, 2™, K)p(g™ | 5,2, K)dz™
= [ Tz Op | K)
1
X exp <—§ (™ - zZ)) dz™

:p(Lm |a7a;g”7IC) 'p(zgn/ |/37.'I;T,IC)

(2)2N
det(I'™)

—z) 1" (2

12)

where

I = D2[-logp(Ly, |, z,K) — log p(z | B,x", K)]|z=zm .

Letting [z)'],, denote the position of the n-th node in £, and
To\n the position of all other nodes, we may assess the prior
p(x | B,2",K) using the pseudo-likelihood approximation
[32]:

p(za | B,3", K)

N

H p ([ITan]n |$:1n\n7ﬁ7xr7lc)
n=1

vxl'|z",K
oxp (~ L1

1 f[.’l:gl]n exp ( U |.'1:r IC)) dlzm],
( U(.’I,‘m |:1;r IC))

1

N exp

mIn | e
XP(—M) (2m)2/det(JT)
(13)

3
Il

-
]

where a local Laplace approximation was used in the last step,
and the notations ' | ™ and J v are as defined in Section III-B.
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Finally, ignoring interdependencies between neighboring
mesh nodes in I, and using the notation I]' as defined in
Section III-B, we have

N
det(I™) ~ [ det (I7). (14)
n=1

Plugging (13) and (14) into (12), we obtain (8).

APPENDIX C
INTEGRATING OVER «

We here derive the approximation to

/ H p(Lm |, 2™, K) | p(a)da

used to obtain (9). Substituting p(L,, | @, £, K) with the lower
bound

m
in

T (&2t
i=1n=1 WZ%

factorizes the integrand over the mesh nodes

~TT1 11 "'(:L) I, (15)
n=1 \m=1i=1 PR
where
K ak.N.
In:/ (chl) ") plag)day,
@n \k=1

with N, = M S WL"; For the case K = 3, the prior
p(ay,) is flat and I, is given by

ST (ak N+ 1)

9l S
T(N, +3)
20N, +1) Lk oT (diz Nn + 1)
T DN, +3) I(N, +1)
20N, +1) T (ak) o
L(N, +3) =5 "
_ Z!F(Nn +1) Mo T L wr,
=g LLIE)

where the next-to-last step is based on Stirling’s approximation
for the Gamma function I'(2 + 1) ~ "¢, and on the fact that
Z,I: &F = 1. In the general case K > 3, the prior p(a,,) only

n
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allows nonzero probabilities for three labels simultaneously but
is otherwise flat, so that we have

s M I 3
2II(N,, +1 m\ W,
= () A T ()™
3 F(N’n + 3) m=11i=1
S

Plugging this result into (15) and rearranging factors, we finally
obtain

M
[ (1L #tnlas™x)) ada
S \m=1

I N ™ Wi N

M AL i,m
n o (x; -
SRIIIE

m=1i=1n=1

-~

Dpi (lqm I dvim ,IC)
which explains (9).
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