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ABSTRACT

We investigate the use of anatomical priors in a Bayesian
framework for diffusion tractography. We compare priors
that utilize different types of information on the white-matter
pathways to be reconstructed. This information includes man-
ually labeled paths from a set of training subjects and anatom-
ical segmentation labels obtained from T1-weighted MR im-
ages of the same subjects. Our results indicate that the use of
prior information increases robustness to end-point ROI size
and yields solutions that agree with expert-drawn manual la-
bels, obviating the need for manual intervention on any new
test subjects.

Index Terms— diffusion tractography, magnetic reso-
nance imaging, statistical reconstruction

1. INTRODUCTION

Diffusion tractography is the reconstruction of cerebral white-
matter fiber bundles from magnetic resonance (MR) images
acquired with diffusion weighting, where image intensity at
each voxel depends on the orientation(s) along which water
molecules diffuse at that voxel. This is a challenging problem,
not only because of the size of the solution space, but also
because of the uncertainty introduced by imaging noise and
multiple true diffusion directions at every voxel.
Many of the proposed solutions to this problem are lo-

cal, in the sense that the tractography algorithm considers
the diffusion-weighted (DW) image data at one location at
a time to determine the most likely fiber bundle orientation at
that location, then steps in that direction to the next location
(e.g., [1]). These algorithms, which can be deterministic or
probabilistic, are suitable for exploring all possible connec-
tions from one brain region, which is used as a starting point,
to any other region. However, they may encounter difficul-
ties in isolating a known pathway between two given brain
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regions, particularly when the connection to be identified is a
weak one and thus dominated by larger pathways originating
from either of the regions of interest.
Global tractography methods have been introduced to ad-

dress these problems by estimating the entire pathway be-
tween two regions at once, rather than step-by-step [2,3]. Al-
though the pathway is typically parameterized in some way to
contain the size of the solution space, searching through that
space remains cumbersome and sensitive to initialization.
Many tractography methods, whether local or global, at-

tempt to facilitate the search by introducing different types
of constraints. Common examples are bounds on the bend-
ing angle or the total length of the pathway. Implicitly these
constraints are based on prior knowledge of the shape of the
pathway of interest in a typical brain. Usually, however, these
methods do not offer a mechanism for training these parame-
ters explicitly, instead leaving it up to the user to tune them by
trial and error. In addition to tuning parameters, manual in-
tervention is sometimes required to define waypoints to guide
the algorithm, particularly when tracing weaker connections.
The need for manual processing can make tractography meth-
ods especially inefficient for large population studies.
We recently proposed a fully automated method for prob-

abilistic tractography that obviates the need for manual in-
tervention by introducing prior information on the shape of
the pathways of interest, derived from a set of training sub-
jects [4]. The method utilizes a likelihood model for global
tractography introduced by Jbabdi et al. [2]. This model in-
volves a representation of the diffusion process in terms of
multiple diffusion compartments, thus allowing for more than
one major diffusion direction per voxel [5], and a parame-
terization of the unknown pathways as splines with a small
number of control points which are to be optimized.
In this work we investigate priors that, in addition to a

manual labeling of the paths in the training subjects, also uti-
lize information about surrounding anatomical structures in
the training subjects and the test subject. This information
is derived from automatic segmentations of T1-weighted im-
ages of the same subjects, produced by the FreeSurfer soft-
ware [6]. We present preliminary results from a comparison
of paths obtained by the global probabilistic framework using
different prior models on a set of ten healthy subjects.
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2. BACKGROUND

Let F be the unknown path, to be estimated from the mea-
sured diffusion-weighted (DW) images Y by maximizing the
posterior probability:

p(F ,Ω|Y ) ∝ p(Y |F ,Ω) p(F ,Ω), (1)

where Ω are the other unknown parameters in the model.

2.1. Data likelihood model

Following [2], we model the likelihood of the imagesY given
the pathF as independent samples of a Gaussian distribution
with unknown covariance Σ:

p(Y |F ,Ω) = p(Y |Θ,Φ, s0,d,f ,Σ) ∼ N (μ;Σ), (2)

where the mean μ involves a multi-compartment forward
model of the diffusion process at each voxel [5]. This model
represents the expected intensity at the jth voxel in the DW
image acquired with the ith diffusion-encoding direction as

μij = s0j
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where the first summand inside the braces represents an
isotropic diffusion compartment and the remaining nF sum-
mands represent perfectly anisotropic fiber components with
orientations defined by the angles (θl

j , φ
l
j). The diffusion-

encoding weight and direction, bi and ri respectively, are
known acquisition parameters. The non-DW image intensity
s0j , the diffusivity dj , the anisotropic compartment volume
fractions f l

j , l = 1, . . . , nF , and the anisotropic compartment
orientations (θl

j , φ
l
j), l = 1, . . . , nF , are unknown parameters

to be estimated. Finally,A is the outer product of a unit vector
along the left-right axis and R(θl

j , φ
l
j) is the rotation matrix

that applies a rotation by θl
j around the anterior-posterior axis

and by φl
j around the inferior-superior axis.

The prior term in (1) is given by

p(F ,Ω) = p(s0)p(d)p(Σ)p(f |F)p(Θ,Φ|F)p(F), (4)

where p(·) denotes the prior distribution of its argument. The
DW image intensities Y are assumed independent and the
unknown variances inΣ are nuisance parameters whose prior
is integrated out of the posterior; most other terms in (4) are
chosen to be non-informative priors, as detailed in [2].

2.2. Path prior model

Once the two regions of interest (ROIs) where the endpoints
of the path F lie are defined, the path is modeled as a piece-
wise cubic Catmull-Rom spline connecting the endpoints,

with a small number of intermediate control points. The path
estimation problem then becomes to position the endpoints
and control points of the spline to maximize the posterior (1).
Even with a small number of control points and small end
ROIs, however, the space of all possible paths F is still very
large, making the optimization problem difficult. Thus, we
constrain the solution space further via the prior p(F).
In [2] the only information on F included in p(F) is

whether the two end ROIs are known a priori to be connected
to each other or not. That is, conditional on the ROIs be-
ing connected, all paths that connect them are assumed to be
equally probable.
In [4] we proposed to estimate the prior distribution of

F from a set of training subjects where the paths of interest
were labeled manually by an expert. Here we formalize the
definition of the priors and expand their treatment to include
information on labels from an anatomical segmentation. Let
F1, . . . ,Fn be splines fitted to the manually labeled control
points from each of the n training subjects. Assuming spa-
tial independence and using basic probability theory, it can be
shown that the path prior is given by

p(F) = p(F |F1, . . . ,Fn)

=
∏
j∈F

p(j ∈ F |F1, . . . ,Fn)

·
∏
j /∈F

p(j /∈ F |F1, . . . ,Fn)

=
∏
j∈F

nj + 1

n + 2

∏
j /∈F

(1−
nj + 1

n + 2
), (5)

where j indexes all voxels in the volume and nj is the number
of training paths that include the voxel j. This is similar to
estimating the probability of a voxel j belonging to the path
from a histogram of the number of training paths that include
j, except that it assigns non-zero probability to voxels that
aren’t included in any of the training paths, thus resulting in
less bias towards the training set.
Similarly, conditional on segmentation mapsA1, . . . ,An

for the training subjects andA for the test subject, as well as
the training paths F1, . . . ,Fn, the path prior is given by:

p(F) = p(F |A,A1, . . . ,An,F1, . . . ,Fn)

=
∏
j∈F

njA(j) + 1

njA(j) + n̄jA(j) + 2

·
∏
j /∈F

n̄jA(j) + 1

njA(j) + n̄jA(j) + 2
, (6)

where njA(j) and n̄jA(j) are the numbers of training subjects
whose segmentation label at voxel j is the same asA(j) and
whose paths do or don’t include, respectively, the voxel j.
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3. PRELIMINARY RESULTS

We performed tractography on a data set provided by the
Mental Illness and Neuroscience Discovery (MIND) Insti-
tute [7]. The data was collected on 10 healthy volunteers
scanned at 1.5T at the Massachusetts General Hospital. The
scans included DW images with resolution 2x2x2 mm and 60
gradient directions, and T1-weighted images with resolution
1x1x1 mm. Each subject’s DW images were aligned to the
individual’s T1 image by affine registration. The DW images
of all subjects were also aligned to each other in Talairach
space by affine registration.
Using each subject’s fractional anisotropy and primary

eigenvector maps, experts labeled the corticospinal tract
(CST), the three subcomponents of the superior longitudi-
nal fasciculus (SLF1, SLF2, SLF3) and the cingulum. The
labeling involved placing control points along each path. A
spline was then fit to the points to obtain one training path per
tract per subject.
For each subject we used the other nine as a training set.

All path posteriors were estimated by MCMC. We tested the
following approaches: (i) Using no prior information from
training subjects, (ii) Using the manual path labels only to
initialize the MCMC algorithm but not in a prior, (iii) A prior
like (5) based on the manually labeled paths only, (iv) A prior
like (6) whereA(j) includes the anatomical segmentation la-
bels at j and its six nearest voxels, and (v) A prior like (6)
whereA(j) includes the six nearest segmentation labels (that
are different from the label at j) in the LR, AP, IS directions.
We obtained the seed and target ROIs by finding the cen-

troids of the corresponding manually labeled end points of
the nine training subjects. To assess the robustness of each
method to ROI size, we dilated the seed and target ROIs si-
multaneously and repeated the posterior estimation with ROIs
of diameter equal to 1, 3, 5, 9, 17, and 33 voxels.
We computed the modified Hausdorff distance of the path

posteriors produced by each of the five approaches to the
“ground truth,” represented by the training path from the test
subject itself. We define this distance between two sets of
points as the mean of the minimum distance from a given
point in the first set to any point in the second set. One such
distance measure was obtained for each subject and ROI size
combination and is plotted in Fig. 1.
Fig. 2 shows examples of path posteriors obtained using

methods (ii)-(v). For each method, the estimated posteriors
for the SLF1 of a single subject with the 6 different end ROI
sizes have been superimposed. For comparison, the manually
labeled points of the SLF1 for the same subject have also been
superimposed on the path posteriors.

4. DISCUSSION AND FUTUREWORK

Our results indicate that incorporating path priors yields solu-
tions with better agreement with manual path labels and bet-
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Fig. 1. Modified Hausdorff distance between the estimated
path posteriors and the spline fitted to the same subject’s man-
ually labeled points. The scatter plots show individual sub-
ject/ROI size combinations, with larger markers correspond-
ing to larger end ROIs. The horizontal lines show the average
for each method.

ter reliability with respect to end ROI selection. The prior
that incorporated information on surrounding anatomical seg-
mentation labels performed better than other priors overall, as
illustrated by smaller distances to the manually labeled paths
(seen in Fig. 1) and better overlap between posteriors obtained
with different end ROI sizes (seen in Fig. 2).
Between the two priors that used anatomical segmenta-

tions, results were better when the prior incorporated infor-
mation on surrounding labels, rather than labels at the local
neighborhood of each voxel. This is to be expected, as the
local neighborhood along the pathway includes mostly white
matter voxels, so it doesn’t provide much additional infor-
mation to constrain the path. The surrounding (mostly non-
white-matter) labels, on the other hand, constrain the possible
locations of the path more successfully.
Interestingly, the prior that incorporated information on

surrounding anatomical segmentation labels performed very
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similarly to a prior that used only manually defined labels of
the paths of interest. However, compared to the manual label
prior, the segmentation prior includes many more parameters
whose prior probability has to be estimated from the train-
ing data. Thus, the small training set of 9 subjects that was
used here may not be sufficient for the segmentation priors
to perform optimally. We are currently investigating the use
of larger training sets, the sensitivity of the method to inter-
and intra-rater variability, as well as improved inter-subject
alignment by elastic registration.
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(a) Initialization only

(b) Prior using manual labels

(c) Prior using local segmentation labels

(d) Prior using nearest segmentation labels

Fig. 2. SLF1 path posteriors from a single subject with differ-
ent end ROI sizes, reconstructed with different types of pri-
ors. The points from the subject’s manual labeling are shown
as squares. The manually labeled points from the other 9 sub-
jects were used as a training set.
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