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Previously we introduced an automated high-dimensional non-linear registration framework, CVS, that
combines volumetric and surface-based alignment to achieve robust and accurate correspondence in both
cortical and sub-cortical regions (Postelnicu et al., 2009). In this paper we show that using CVS to compute
cross-subject alignment from anatomical images, then applying the previously computed alignment to
diffusion weighted MRI images, outperforms state-of-the-art techniques for computing cross-subject
alignment directly from the DWI data itself. Specifically, we show that CVS outperforms the alignment
component of TBSS in terms of degree-of-alignment of manually labeled tract models for the uncinate
fasciculus, the inferior longitudinal fasciculus and the corticospinal tract. In addition, we compare linear
alignment using FLIRT based on either fractional anisotropy or anatomical volumes across-subjects, and find
a comparable effect. Together these results imply a clear advantage to aligning anatomy as opposed to lower
resolution DWI data even when the final goal is diffusion analysis.
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Introduction

The analysis of diffusion weighted MRI (DWI) data has become
increasingly important in neuroimaging. DWI images contain
information about the anatomy essential for quantifying white
matter architecture and connectivity patterns. DWI images reveal
details about the connectional and microstructural anatomy of the
living human brain that are inaccessible to any other in vivo
imaging modality. Diffusion tensor images (DTI), in particular,
describe the local diffusion process or the 3D probability profile of
water diffusion in tissue using a 3×3 symmetric positive definite
matrix at each voxel.

The analysis of white matter integrity in brain development,
aging, and neurological conditions is a relatively new and active area
of neuroscientific and clinical research (Johansen-Berg and Behrens,
2009). One approach to quantifying white matter anatomy with DWI
data is to compute scalar summaries of the diffusion weighted images
such as fractional anisotropy (FA), trace, and apparent diffusion
coefficient (ADC). A more complex alternative is to examine re-
constructed fiber tractography, which reveals systems-level infor-
mation not directly contained in the voxel measures (Basser et al.,
2000).

Tract-based analysis of populations allows one to quantify the
effects of natural and disease processes using a rich set of
information, including diffusion values along the tracts, integrity of
the fiber bundles, as well as shape and deformation quantification of
tract geometry (Corouge et al., 2005; Maddah et al., 2008; O'Donnell
et al., 2009). One of the most frequently cited group analysis streams
in neuroimaging is tract-based spatial statistics (TBSS) (Smith et al.,
2006) available as part of the FSL software suite from the FMRIB
group at Oxford. This analysis pipeline projects the FA data from all
subjects onto a mean FA tract skeleton, before applying voxel-wise
cross-subject statistics.

For group studies and for labeling the anatomy of an individual
subject it is frequently important to establish inter-subject corre-
spondence, either directly or through a common coordinate system.
Since structural MRI images such as T1- and T2-weighted acquisi-
tions contain little information about the interior of the cerebral
white matter, it is reasonable to base cross-subject alignment in
these regions on properties of the DWI data, either directly or
indirectly. As an example of the former, several algorithms have been
introduced that make use of information directly derived from the
DTI images. One way to define such a framework is to extract scalar-
valued summaries from the DTI tensors at each voxel (trace,
fractional anisotropy,…) and define a similarity metric on these
quantities. Guimond and Warfield (2002) suggested a modified
version of the demon's algorithm for aligning T2 and DTI datasets by
using transformation-invariant tensor characteristics (eigenvalues)
extracted from the diffusion tensors. Alexander and Gee (2000) build
upon a more complete set of diffusion information and their
alignment of structural and DTI scans is proposed via an elastic
matching algorithm using the tensor difference as a similarity metric.
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1 Smith et al.'s paper has been the most cited paper published in NeuroImage since
2006, the year of its publication. It has a total of 176 citations registered in the “ISI Web
of Science” (http://www.isiwebofknowledge.com/) database. This number is more
than a 50% higher than the citation numbers for any of the second-most cited papers
published between 2006 and present (128, 111, 36 and 17 respectively).
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Ruiz-Alzola et al. (2002) proposed a template matching algorithm,
where a similarity function derived from the generalized correlation
matrix is computed directly from the diffusion tensors. The inclusion
of information beyond the scalar metrics has also been shown to be
advantageous in some studies. For example Park et al. (2003) found
that considering all six components of the diffusion tensors resulted
in improved alignment accuracy. In the TBSS framework, the spatial
alignment of the input data is based on computing an affine and
nonlinear warp combination to align the fractional anisotropy
volume of each subject with an atlas coordinate system. Another
approach is to use the reconstructed fiber tracts themselves as a
basis of spatial normalization. Objective functions can be constructed
that ensure that the size, shape and spatial location of white matter
fiber tracts from different individuals are in corresponding locations
(Ziyan et al., 2007; Mayer and Greenspan, 2008; Petrovic et al.,
2009; Zvitia et al., 2010). Even though in the case of these
approaches correspondence between subjects is established based
upon (some portion of) the diffusion data and thus more
information about the white matter is considered, the lower spatial
resolution, contrast-to-noise ratio (CNR) and geometric distortions
of diffusion images often limit the accuracy and robustness of the
outcomes.

In indirect registration approaches, structural acquisitions such as
T1- and T2-weighted scans of corresponding subjects are used to
compute image correspondence. As DWI acquisitions are typically
acquired in the same session as the structural images, the alignment
of structural and DTI images of the same subject usually involves just
rigid or linear motion correction (as long as a separate EPI distortion
correction precedes this registration in the diffusion image pre-
processing pipeline). The composition of these registrations then
allows one to transform the DWI data into a common coordinate
system. As mentioned above, the advantage of these methods is
inherently related to the significantly higher spatial resolution,
contrast-to-noise ratio and far less geometric distortion of the
structural acquisitions. However, these images contain little infor-
mation about the architecture of the interior of the white matter, and
thus the alignment in these regions might be somewhat arbitrary
when based only on structural scans. Significant research effort has
been devoted to incorporating diffusion derived measurements into
nonlinear cross-subject alignment with the goal of improving the
alignment of these areas (Park et al., 2003; Alexander and Gee, 2000;
Jones and Griffin et al., 2002). Recently, various similarity metrics
(quantifying the level of similarity of diffusion features at corres-
ponding spatial locations) have been suggested for use in nonlinear
cross-subject DWI alignment (Alexander et al., 2000, 2001).

In this paper we evaluate the performance of our combined
volume and surface (CVS) algorithm (Postelnicu et al., 2009) for the
purposes of fiber bundle alignment and show that high accuracy
cross-subject registration based on structural MRI images can provide
improved alignment compared to methods directly aligning DWI-
derived scalar volumes, such as the widely used FA volumes. In the
past, we established that our technique, using structural acquisitions,
accurately and robustly aligns both cortical and non-cortical regions
of the brain anatomy, and at present we demonstrate that when its
results are applied to corresponding diffusion data, it also achieves
superior accuracy. For our analysis, we compare the performance of
CVS to the FA-FNIRT registration (registration component from the
TBSS preprocessing) as well as linear alignment FLIRT (Jenkinson and
Smith, 2001) computed from either the anatomical or the DWI data.
We evaluate, both qualitatively and quantitatively, the resulting
alignments by analyzing the correspondence of a set of manually
labeled fiber bundles. The results demonstrate that there is a clear
advantage to aligning the anatomy, when available, as opposed to
relying only on the lower resolution, distorted diffusion information,
even if the goal of the registration is the analysis of the diffusion
properties of the brain.
Methods

In this section we introduce our image preprocessing stream and
the four image registration methods whose performance we later
compare in sections Experiments and Results. For each registration
method we describe the processing steps and the underlying imple-
mentation details.

Data processing

All the data sets in our experiments were subjected to the
following preprocessing steps. The structural MRI acquisitions were
analyzed by the FreeSurfer reconstruction pipeline (FreeSurfer,
2009) that produces intensity normalized T1-weighted parameter
maps, automatic segmentation and parcellation labels, and white
and pial surfaces separating the white matter/gray matter and gray
matter/CSF regions respectively (Fischl et al., 1999a, 2002, 2004a,b;
Dale et al., 1999). For the diffusion images, the preprocessing of the
balanced-echo diffusion data involves motion, B0 and eddy-current
correction. First, the individual direction scans are unwarped using
the phase-unwrapping and B0 correction algorithms developed and
distributed as part of the FMRIB Software Library (FSL) package
(Jenkinson, 2001; Jezzard and Balaban, 1995; Smith et al., 2004).
Next, each unwarped DW image is registered to the T2-weighted
low-b image (i.e. the image with no diffusion encoding).

Note that for the balanced echo sequences the eddy current dis-
tortions are small, and in our experience the 12 parameter transforms
are sufficient to remove bothmotion artifacts and residual eddy-current
distortions. Finally, the diffusion tensor image and several scalar maps
including fractional anisotropy are computed in the preprocessed
diffusion domain. The data processing stream for FA-FNIRT is slightly
different from the above and is detailed in section FA-FNIRT.

In addition to the above, a rigid transform is computed that maxi-
mizes the mutual information between the T1-weighted anatomical
and the unwarped T2-weighted low-b image. This is to establish a
correspondence between the structural and diffusion spaces.

FLIRT

FLIRT is a robust and accurate automated linear (affine)
registration tool based around a multi-start, multi-resolution global
optimization method (Jenkinson and Smith, 2001). It is available as
part of the FSL software package and it can be used for inter- and
intra-modal registration with 2D or 3D images. In addition, it can be
run with a number of different transformation models (degrees of
freedom) and it implements a general cost function weighting
scheme for all cost functions. In our experiments, we specified the
objective function to be correlation ratio and computed a 12-
component affine registration matrix. We ran this algorithm on both
the T1-weighted structural images and the FA volumes computed
from the corresponding diffusion weighted images. Below, we refer
to the former framework as FLIRT and the latter as FA-FLIRT.

FA-FNIRT

Tract-Based Spatial Statistics (Smith et al., 2006) has been themost
cited NeuroImage article since its publication1. It describes a
framework from the FSL group performing voxel-wise statistical
analysis of fractional anisotropy data. In the current paper, the
algorithm that we call FA-FNIRT, in fact, refers to the preprocessing

http://www.isiwebofknowledge.com/
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steps of this analysis pipeline. After brain extraction (using BET Smith,
2002), the FA volumes of all subjects are computed and aligned into a
common space by using first the affine registration step FLIRT and
then the nonlinear registration FNIRT (Andersson et al., 2007a,b). The
latter registration tool uses a B-splines representation of the
registration warp field (Rueckert et al., 1999) and optimizes the
sum of squared differences (SSD) as its objective function. More
precisely, after the FA computations, we executed the tbss_1_preproc
and tbss_2_reg steps from the TBSS pipeline. For our experiments, we
used the default parameter settings of TBSS to process the diffusion
images of our dataset and after the warps were computed, we applied
them to the manually specified tracts.

Additionally, we also attempted to run the non-linear registration
component of this pipeline between the anatomical data for each
pair of subjects. FNIRT, however, is not typically run in a subject-to-
subject setting; it is optimized for subject-to-template registrations
and the corresponding configuration file is not ideal, at present, to
achieve high quality subject-to-subject correspondence. Our results
(presented below) imply that when such optimized configuration
files are developed for generating subject-to-subject registration
based on the anatomy, the accuracy of the FA-FNIRT pipeline will be
further improved.

Combined volumetric and surface-based registration

Combined volumetric and surface-based registration is our brain
image registration method that maximizes the alignment of both
cortical and subcortical structures. It consists of three image
processing steps. First, a surface registration algorithm finds corre-
spondences between the input surfaces from two brain scans (Fischl
et al., 1999b) and these correspondences are transformed into a
sparse displacement field in Euclidean space. This morph is then
diffused into a dense displacement field in the volume using a
nonlinear elastic model. Finally, a nonlinear volumetric registration
algorithm refines the alignment, bringing subcortical and ventricular
structures, which are not near the surfaces used in the first step, into
accurate alignment. This technique has been shown to produce state-
of-the-art alignment of cortical folding patterns, architectonics and
subcortical structures (Postelnicu et al., 2009). In the present paper,
we quantify how well it aligns white matter fiber tracts computed
from DWI data.

Experiments

We compared the registration accuracy of our registration tool
with respect to three other literature standards. We experimented
with FLIRT on both structural and diffusion images, FA-FNIRT, and
CVS. We then computed the symmetric mean Hausdorff distance
between a set of manually selected fiber bundles morphed into the
common coordinate spaces.

In this section, we detail our data processing stream and present
how the manually identified fiber bundles, that are later used for our
Fig. 1. Labeling the CST: (a) deterministic tractography seeded in the whole brain, (b) tracts
tracts going through both the precentral gyri and brainstem ROIs.
quantitative analysis of registration performance, are extracted from
the diffusion weighted images using both automatically andmanually
specified ROIs.

Data acquisitions protocol

Our experiments were run on data provided to us through our
collaboration with Dr. Randy Gollub and the Mental Illness and
Neuroscience Discovery (MIND) Institute. Fifty-three data sets
were selected for this study all of which have been acquired by
our collaborators using an identical MRI sequence on a Siemens
scanner. The structural data is of 256×256×256 size with 1 mm3

voxel resolution and TR=12 ms, TE=4.76 ms, TI=4.76 ms, flip
angle=20. The diffusion data scans use single shot echo planar
imaging, and a twice-refocused spin echo pulse sequence,
optimized to minimize eddy current-induced image distortions
(TR/TE=7400/89 ms, b=700 s/mm2, 256×256 mm FOV,
128×128 matrix, 2 mm (0 mm gap) slice thickness, 10T2+60
DWI, total acquisition time 8 min 38 s). Sixty four slices were
acquired in the AC-PC plane. The 60 diffusion-encoding gradient
directions were determined using the electrostatic shell method,
and result in a high signal-to-noise diffusion volume. In addition
to taking advantage of the built-in distortion minimization of this
sequence, the acquisitions also included B0 field maps that could
be used for further distortion correction. These corrections allow
us to register DWI images with the high-resolution anatomical
images.

Visually-guided fiber bundle generation

In order to identify a set of fiber bundles for our quantitative
registration performance analysis, we propose to use the validated
manual tract segmentation procedure defined in (Wakana et al.,
2003). In this approach, all tract solutions are computed for the entire
brain, then regions of interest (ROIs) are used to remove fibers that
are not part of the desired tract, or to restore fibers removed by
previous ROIs. These ROIs interact with the full set of tract solutions
using Boolean operators AND, OR and NOT. In this section, we use the
corticospinal tract (CST) to illustrate the procedure, with the full set
tracts described in section Three tracts of interest.

The CST is an extensive white matter bundle that begins in
primary motor cortex (Brodmann's area 4, frontal lobe) and ends
at various levels of the anterior spinal cord. The procedure for
modeling the fibers in the CST is illustrated in Fig. 1 using the
Trackvis utility (Trackvis, 2009). Figure (a) shows the results of
running the Fiber Assignment by Continuous Tracking (FACT)
(Mori et al., 1999) deterministic tractography algorithm using
every voxel in the brain as a seed for a tract solution. Images (b)
and (c) show only tracts that intersect the left or right precentral
gyrus white matter and the brainstem respectively, where these
ROIs were automatically generated by FreeSurfer (FreeSurfer,
2009). We then combine the precentral gyrus ROIs with the
going through the precentral gyri ROIS, (c) tracts going through the brainstem ROI, (d)



Fig. 2. The three tracts of interest manually selected from 53 subjects.

Fig. 3. Reliability scores computed on the uncinate fiber bundle on ten subjects by three
raters. The green circles correspond to individual measurements, while the red and blue
bars are their mean and the black line indicates the corresponding standard error.
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brainstem one using an AND operator to obtain only solutions
connecting them. Any fibers that appear in this solution that are
not actually part of the CST anatomy are removed using a NOT
operator. Thus, the final set of tracts, shown on image (d),
represents those that traverse brainstem AND precentral gyrus
white matter via the internal capsule but NOT any extraneous
fiber tracts.

Three tracts of interest

In this paper we use three different tracts for the validation of
the registration experiments. Besides the CST, we generated
models of the inferior longitudinal fasciculus and the uncinate.
Even though we mostly relied on the fiber definitions presented in
a recent paper by Wakana et al. (2003), in this section, we give a
brief description of the key ROIs and segmentation rules that we
used to identify them. Fig. 2 illustrates the resulting fiber tracts
from the population of 53 subjects used as a gold standard in this
study.

Cortico-spinal tract (CST)
The CST extends from the precentral gyrus to the spinal cord at

varying levels. Cortically, it runs from the superior part of the brain
fanning out laterally in order to represent leg, trunk, hand, and
face, with leg being the most medial and face being the most
lateral. It travels down through the posterior limb of the internal
capsule and through the cerebral peduncles in the midbrain. We
defined the start and end ROI for this region to be the white
matter of the precentral gyrus and the brainstem, respectively,
both being available to us from the FreeSurfer processing pipeline.
We removed fibers, using exclusion ROIs, that were projecting to
the cerebellum and the thalamus and heading in the lateral or
frontal directions. Additionally, corticopontine fibers that were
crossing in the pons were also eliminated.

Inferior longitudinal fasciculus (ILF)
The ILF travels from the temporal lobe and fans out toward the

occipital lobe. We defined the anterior ROI as the temporal white
matter in the posterior-most coronal slice in which the temporal lobe
is not yet connected to the frontal lobe. The posterior ROI was the
white matter region of the entire hemisphere on a coronal slice
selected at that edge of the cingulum on a parasagittal slice. We
eliminated any fibers that went through the putamen or that ran far
too medially.

Uncinate fasciculus (UNC)
The uncinate fasciculus travels between the temporal and the

frontal lobe making a C shape. We defined the anterior ROI of the
uncinate to include all frontal projections from the temporal lobe,
usually localized inferior to the putamen. The posterior ROI was
drawn to include the temporal white matter in the posterior most
coronal slice in which the temporal lobe was not connected to the
frontal lobe similar to the ROI for the ILF (see above). Any fibers that
headed sharply medially were excluded.

Reliability

Some interaction with the data is required in order to
generate an accurate set of fibers, which naturally raises the
issue of reliability of the manually generated training set. We
tested the reliability of these segmentations using both intra-rater
and inter-rater experiments. Three raters each generated uncinate
representations for both hemispheres of ten subjects using the
procedure detailed above and one rater repeated the segmenta-
tions several weeks later. The results of this study are given in
Fig. 3, showing the symmetric mean Hausdorff distance (HD) of
the inter- (a) and intra- (b) rater reliability. The classic HD is the
maximum of the minimum distances of each point in one
labeling to the other labeling. The symmetric mean HD is the
mean of the minimum distances of each set to the other. As can
be seen, the intra-rater error has a mean of around 1.15 mm, or
N=0.6 diffusion voxel, and even the inter-rater error is only a
modest 2 mm, indicating that the procedure is stable and reliable.

Experiment setup

For all the registration methods besides FA-FNIRT, we randomly
selected one subject from the input data set to be the template



Fig. 5. Average tracts after registration mapped to the template displayed with
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and registered the rest of the data to it. For FA-FNIRT the subjects
are registered into an FSL template space. In order to characterize
the registration performance of the different measures, we aligned
the fiber bundles using the resulting morphs and then computed
the maximum and mean Hausdorff distance among them in the
new space.

Results

First, we present qualitative results from our registration
experiments. In Fig. 4 we illustrate the alignment of the CST fibers
on the template brain. Specifically, the CST from each subject was
transformed into the template brain coordinate system using the
previously computed registration from each of the 4 techniques.
We then computed the probability of occurrence of the CST at each
point in space. As can be seen, in the case of CVS, the mean
reaches higher values and is less diffuse both in the cortical and
subcortical regions as compared to the other methods, indicating
that this registration technique groups the individual subject CSTs
more tightly.

Fig. 5 presents the probability maps in 3D using isosurfaces. We
thresholded the maps at 0.1 (at least 10% agreement between the
manually labeled and registered fiber tracts) and constructed
isosurfaces to visualize their spatial content. Note the accuracy
with which the purely anatomical registration using CVS predicts
the location of both the CST and ILF, resulting in significantly
tighter and more accurate estimates of the spatial location of the
fiber bundles. Additionally the sharpening of the distributions
yielded by the nonlinear CVS warps relative to FA-FNIRT and FLIRT,
provides evidence that the alignment of anatomy does also align
the underlying fascicles.

For a quantitative evaluation, we computed the mean Hausdorff
distance measures for each registration method for each of the
tracts, as shown in Fig. 6. In summary, for all three tracts and both
Fig. 4. The average CST tracts after registration mapped to the template.

isosurfaces: (top) FLIRT, (middle) FA-FNIRT, (bottom) CVS.



Fig. 6. Mean Hausdorff distance measures for the three fiber bundles: (top) CST, (middle) ILF, (bottom) UNC.
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hemispheres, we found that CVS outperformed FLIRT, FA-FLIRT and
FA-FNIRT in a statistically significant manner. In addition, FA-FLIRT
was outperformed by all other three methods in a statistically
significant manner. FLIRT was outperformed also by FA-FNIRT in all
cases in a statistically significantly manner except for lh UNC and
lh ILF where FLIRT outperformed FA-FNIRT. It is interesting to note
that the accuracy of the linear registration computed by FLIRT
increased substantially when using the structural data (FLIRT) over
the DWI data (FA-FLIRT), even though the gold standard we use for
assessing accuracy is derived from the DWI data. For the above
quantitative comparison, p-values were computed using the
Student t-test with αb0.0025.

Finally, in order to verify that FLIRT and FNIRT were performing
as expected, we estimated cross-subject FA variability for each
registration technique. The results of this study are given in Fig. 7.
The left-hand plot in Fig. 7 shows the mean value of the variance
volumes, and the right-hand one is a scatterplot of the mean squared
difference of morphed FA volumes for each registration algorithm.



Fig. 7. For all four registration methods: (a) mean of the variance volume of the
morphed FA volumes, (b) scatter plot of the mean squared difference of morphed FA
volumes per subject.

212 L. Zöllei et al. / NeuroImage 51 (2010) 206–213
As expected, FA-FNIRT and FA-FLIRT both accomplish their goal of
reducing the cross-subject variance of the FA volumes, indicating
that they are functioning properly, and providing evidence that
alignment of FA volumes does not imply tract alignment.

Conclusion

In this paper, we have presented results that suggest that cross-
subject registration based on structural MRI images can provide im-
Fig. 8. Mean Hausdorff distance measures for the three
proved alignment of fiber architecture compared to directly aligning
DWI-derived scalar volumes, such as the widely used FA volumes.

We compared the accuracy of the CVS structural registration
method with other widely used techniques for aligning diffusion
weighted images. More specifically, we tested the performance of
various registration methods with respect to the alignment of fiber
bundles. Our conclusion is that the utility of using high-resolution
structural data sets for the alignment of diffusion data sets should
not be underestimated, as they provide significant advantages even
when the goal is diffusion analysis. We emphasize that this is not
to suggest that the DWI data should not be used, only that
initializing the registration with a good alignment of the anatomy
helps achieve significantly increased accuracy in the alignment of
the underlying tracts.

In the future we intend to extend our study of tract alignment
by (i) enhancing CVS to incorporate diffusion information and
quantifying the increased performance provided by this additional
data, (ii) considering registration algorithms that make use of
higher dimensional diffusion information, as opposed to scalar
measures such as FA, (iii) validating our results on probabilistic
tractography outcomes (iv) and investigating what coordinate
system is optimal for a tract-based analysis.

It is worth stressing the superior cross-subject alignment of tracts
that was obtained even when a linear transform was computed from
the structural data as opposed to the DWI data directly. This is
strong evidence that the alignment of structure removes many of the
degrees of freedom in aligning tracts. These results imply that the
relationship between the location of the tracts and the surrounding
anatomy is consistent across subjects. The increased accuracy
provided by CVS would then stem from the fact that it provides
state-of-the-art alignment of cortical, subcortical and ventricular
structures, and that once these are all aligned, the tracts are largely
aligned as well. In addition, recent work has revealed a strong
relationship between cortical folding patterns and architectonic
borders (Fischl et al., 2008). Since one would expect that a given
fiber bundle terminates in a specific and consistent set of
cytoarchitectural regions across subjects, it is reasonable to also
expect more accurate tract registration with improved alignment of
the folding patterns and by extension, the underlying architectonics.

A final important contributing factor to point out is the difference
in image quality between the structural and the DWI data. The fast
encoding necessary to acquire multiple directions in DWI results in
image distortions that are only partially correctable (Jenkinson,
2001; Jezzard and Balaban, 1995). In addition, the goal of the DWI
acquisition is obtaining orientation information, not maximizing
tissue CNR, and thus there is significantly reduced contrast between
anatomical structures in DWI relative to typical anatomical acquisi-
tions. Finally, the need to acquire multiple diffusion directions makes
it difficult to obtain the types of resolutions that are standard in
fiber bundles: (left) CST, (middle) ILF, (right) UNC.
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anatomical imaging, and in fact the typical resolution of anatomical
MRI is approximately an order of magnitude finer than DWI in terms
of voxel volume, implying that finer spatial co-registration is
achievable using the anatomy rather than the DWI. As noted
above, we would not be surprised to find that the accuracy of the
FNIRT-FS alignment increases substantially if it were optimized for
registering anatomical images, and perhaps using this to initialize an
FA-based registration. Unfortunately, a simple sequential combina-
tion of the structural registration and an FA alignment postproces-
sing step is not powerful enough to obtain such improvement. As a
quick experiment, we ran two sets of further experiments: CVS
+flirtfa and CVS+fnirtfa. After completing our CVS registration
framework we added an additional registration step using FA
information from the diffusion images. The former method just
used 12 DOF affine and the latter a non-linear transformation model.
As shown in Fig. 8, such a step did not improve the alignment, but
actually slightly made it worse in all three bundle cases. Therefore,
we believe that relying on a combination of such multi-modal data
sources will necessitate a more careful evaluation.

In summary, we anticipate that cross-subject registration of
connectional anatomy will be improved when techniques are
developed that employ all the available information provided by the
imaging data, including measurements derived from the DWI data
such as tensors or orientation density functions, intensity information
from structural acquisitions, and geometric features provided by
cortical models.
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