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Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power,
to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site
variation in imaging methods could off-set these potential advantages. We used variance components
analysis to investigate sources of variation in the blood oxygen level-dependent (BOLD) signal across four 3-T
magnets in voxelwise and region-of-interest (ROI) analyses. Eighteen participants traveled to four magnet
sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person
variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site
interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased
between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs
were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on
the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect
size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions
where the pooled effect size was large but between-site reliability was poor were associated with reduced
individual differences. Brain regions where the pooled effect size was small but between-site reliability was
excellent were associated with a balance of participants who displayed consistently positive or consistently
negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring
highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental
control.
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Introduction

Several multi-site functional magnetic resonance imaging (fMRI)
studies are currently in process or are being planned (Van Horn and
Toga, 2009). The larger samplesmade possible bymulti-site studies can
potentially increase statistical power, enhance the generalizability of
study results, facilitate the identification of disease risk, increase the
odds of finding uncommon genetic variations, make rare disease and
subgroup identification possible, help justify multivariate analyses, and
support cross-validation designs (Cohen, 1988; Friedman and Glover,
2006a; Jack et al., 2008;Mulkern et al., 2008; VanHorn and Toga, 2009).
Yet the potential advantages of multi-site functional imaging studies
could be off-set by unwanted variation in imagingmethods across sites.
Even when the same activation task is used at different sites and the
same image processing path is employed, potential site differences
might arise from differences in stimulus delivery and response
recording, head stabilization method, field strength, the geometry of
field inhomogeneity, gradient performance, transmit and receive coil
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configuration, system stability, shimming method, type and details of
the image sequence including K-space trajectory, type of K-space
filtering, systemmaintenance, and environmental noise (Friedman and
Glover, 2006a,b; Ojemann et al., 1998; Van Horn and Toga, 2009;
Voyvodic, 2006). The large number of experimental factors that might
differ between sites could introduce unwanted variation related to
site and its interactions into in a multi-site fMRI study. This unwanted
variation may, in turn, undermine the advantages of increased
statistical power and enhanced generalizability that would otherwise
be associated with large-sample studies. Given that unwanted
between-site variation is itself likely to vary from multi-site study to
multi-site study, determining the magnitude of site variation and
evaluating its impact on the consistency of results across sites have
become a critical component of multi-site fMRI studies (Friedman et al.,
2008; Pearlson, 2009).

The consistency of blood oxygen level-dependent (BOLD) fMRI
values across sites has been studied for a variety of behavioral
activation tasks using several different statistical approaches. One
common approach is to measure between-site consistency by
assessing the extent of overlap of either observed or latent activation
regions (Casey et al., 1998; Gountouna et al., 2010; Vlieger et al.,
2003; Zou et al., 2005). These studies find only a modest degree of
overlap in the extent of activation, with the number of regions found
to be significantly activated varying by fivefold across sites in one
study (Casey et al., 1998). Differences in field strength and k-space
trajectory have accounted for significant between-site variation in
some studies (Cohen et al., 2004; Voyvodic, 2006; Zou et al., 2005).
Even when Cartesian K-space trajectories are used at all sites,
differences in the type of image acquisition protocol can produce
differences in the spatial extent andmagnitude of the BOLD signal, as
studies comparing gradient-recalled echo protocols with spin echo
and asymmetric spin echo protocols show (Cohen et al., 2004;
Ojemann et al., 1998).

Methods that measure the overlap of activation extent and volume
across MR systems have been criticized for assuming invariant null
hypothesis distributions across sites and for the use of a specific
threshold to determine statistical significance (Suckling et al., 2008;
Voyvodic 2006). The distributions of the test statistics, however, can
be checked, and if differences in distributions are found, methods are
available to adjust the activation maps or modify the statistical
analysis (Miller, 1986; Voyvodic, 2006). With regard to the second
criticism, overlap consistency can be investigated across a range of
thresholds, as in Zou et al.'s (2005) study. A more fundamental
limitation of overlap methods is that they do not provide a standard
against which to judge the importance of a particular degree of
overlap. The question of how much overlap is necessary to produce
statistically robust and generalizable findings typically remains after
percent overlap statistics are presented. In addition, overlap methods
do not address the question of how consistently subjects can be rank-
ordered by their brain response across sites. For example, in a study
involving assessment of the same subjects scanned at multiple sites, a
high degree of overlap in regional activation might be observed in
group-level mean statistical maps across sites even though the rank-
ordering of the brain response of subjects changes randomly from site
to site. This possibility underscores the point that cross-site reliability
of fMRI measurements cannot be determined solely by examining the
consistency of group activation maps across sites using repeated
measures ANOVA model.

Variance components analysis (VCA), which assesses compo-
nents of systematic and error variance by random effects models, is
another commonly used method to assess cross-site consistency of
fMRI data (Bosnell et al., 2008; Costafreda et al., 2007; Dunn, 2004;
Friedman et al., 2008; Gountouna et al., 2010; Suckling et al., 2008).
VCA provides several useful standards against which to judge the
importance of consistency findings. For investigators interested in
studying the brain basis of individual differences, one natural standard
is to compare variance components of nuisance factors against the
person variance. This strategy of assessing the importance of between-
site variation in fMRI studies has been used in several studies.
Costafreda and colleagues, for example, found that between-subject
variance was nearly seven-fold larger than site variance in the region of
interest (ROI) they studied (Costafreda et al., 2007). In the Gountouna
et al. (2010)study, site variance was virtually zero for several ROIs with
the ratio of subject variance to site variance as large as 44 to 1 in another
especially reliable ROI. Suckling and colleagues reported a value of
between-subject variance that was slightly more than 10 times greater
than the between-site variance (Suckling et al., 2008). Using a fixed-
effect ANOVA model, Sutton and colleagues found effect sizes for
between-subject differences to be seven to sixteen times larger than the
between-site effect for the ROIs studied (Sutton et al., 2008).

Variance components are also commonly used to calculate
intraclass correlations (ICC) that can be compared with the intraclass
correlations of other, perhaps more familiar, variables (Brennan,
2001; Dunn, 2004). Between-site intraclass correlations of ROIs have
been reported in the 0.20 to 0.70 range for fMRI data, depending on
the activationmeasure, behavioral task, and degree of homogeneity of
the magnets studied (Bosnell et al., 2008; Friedman et al., 2008). For
clinical ratings of psychiatric symptoms, ICCs in the 0.20 to 0.70 range
would be rated as ranging from poor to good (Cicchetti and Sparrow,
1981). The intraclass correlation can also be used to assess the impact
ofmeasurement error on the statistical power of between-site studies,
providing a third method to assess the importance of VCA results
(Bosnell et al., 2008; Suckling et al., 2008).

In the present study, healthy volunteers were scanned once at
three sites and twice at a fourth site while performing a working
memory task with emotional or neutral distraction. We investigated
the between-site reliability of BOLD/fMRI data by calculating variance
components for voxelwise data. Voxelwise VCA and ICC maps are
presented in order to identify voxel clusters where particular
components of variation were most prominent and where between-
site reliability was largest. Presenting data for all voxels avoided
limitations of generalization associated with the use of specific
statistical thresholds. We also present findings obtained by averaging
beta-weights over voxels within selected regions of interest (ROI) to
simplify the comparison of our results with those of other studies that
presented ROI results. The main study hypotheses follow:

(1) Clusters of voxels will be identified where the between-subject
variation will be more than 10-fold the value of the between-
site variation. This hypothesis is derived from the VCA studies
discussed above.

(2) Variation attributed to the person-by-site interaction will be
greater than variation associated with the site factor. Because
person-by-site interactions occur when the rank ordering and/
or distance of the BOLD response of subjects differs across sites,
this source of variation reflects a broader array of potential
sources of error than site variation alone.

(3) The magnitude of the ICC will depend on whether the
functional contrast involved a low-level or high-level control
condition, where a low-level control involves only orientation,
attention, and basic perceptual processing, and a high-level
control condition involves additional cognitive processes
(Donaldson and Buckner, 2001). High-level control conditions
are likely to share a larger number of neural processes with the
experimental condition than low-level control conditions
leading to a larger subtraction of neural activity and a smaller
BOLD signal, especially for brain regions that participate in a
multiplicity of neurocognitive functions engaged by the
experimental task. The smaller magnitude of the BOLD
response is likely to restrict the range of person variance,
reducing the between-site ICC (Cronbach, 1970; Magnusson,
1966).



Table 1
Scanner characteristics.

Site number Vendor Model PACE Coil type

A General Electric Signa Excite Not available 8 Channel
B General Electric Signa Excite Not available 8 Channel
C Siemens TIM Trio OFF 12 Channel
D Siemens Trio OFF 8 Channel
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(4) The between-site intraclass correlation will increase as the
number of runs averaged increases. Although this hypothesis
has been supported by a previous study involving a sensori-
motor task, it has not been tested in BOLD data generated by a
cognitive task (Friedman et al., 2008).

We also investigated the relationships among between-site reliabil-
ity, effect size, and sample size. A previous within-site reliability study
found correlations greater than 0.95 between the median within-site
ICC and the activation-threshold t-test value for both an auditory target
detection task and an N-back working memory task (Caceres et al.,
2009). We will examine the relationship between reliability and effect
size for the between-site case. Although we anticipate that median
effect size calculated across voxels will be strongly related to the
magnitude of between-site reliability for those voxels, dissociations
might be observed. If voxels with large activation effect sizes and poor
reliability are observed, we will investigate the possibility that these
voxels have poor reliability due to reduced variation among people
(Brennan, 2001;Magnusson, 1966). If voxelswith small activationeffect
sizes and good between-site reliability are observed, wewill investigate
the possibility that activation magnitude within subjects is consistent
across sites, yet balanced between negative and positive activation
values.

In the present study, the specific form of the ICC we calculated
assessed between-site consistency at an absolute level (Brennan,
2001; Friedman et al., 2008; Shrout and Fleiss, 1979). High between-
site ICC values, therefore, would support the interchangeability of
data and justify the pooling of fMRI values across sites (Friedman
et al., 2008; Shavelson et al., 1989). There are, of course, alternative
definitions of the ICC (Shrout and Fleiss, 1979), and it is useful here to
provide some discussion of the factors that would affect the choice to
assess reliability based on absolute or relative agreement of
measurements at different sites. The appropriate reliability measure
will depend on the type of study being designed and the intended
analysis. Suppose that “site” is explicitly considered as a design factor
and that as a result “site” is explicitly accounted for in the data
analysis. Then it might seem that the site factor will address consistent
differences across site and that an ICC measuring relative agreement
would be appropriate. This argument is plausible as long as “site” is
orthogonal or independent of other design/analysis factors. For such
studies, the Pearson correlation, the generalizability coefficient of
Generalizability Theory or the ICC(3,1) statistic of Shrout and Fleiss
(all of which look for relative rather than absolute agreement)
would be appropriate statistics to assess reliability (Brennan, 2001;
Shavelson et al., 1989; Shrout and Fleiss, 1979). If on the other hand
there are associations between-site and other factors, for example,
there is variation in the patient/control mix cross sites or there is
variation in a genotype of interest, then adjusting for site in the
analysis is not enough to eliminate all site effects and it is valuable to
consider an ICC measuring absolute consistency. In these circum-
stances, having established in a reliability study that site variation
contributes only a small amount of variation to the pooled variance
would permit the pooling, which in turn should increase the
likelihood that important subgroups will be detected and would
enhance both statistical power and the generalizability of results. The
reliability results of the present study were used to design a large
study where the range of genetic variation and relevant symptom
subtypes could not be determined a priori. We therefore calculated
ICCs to assess the consistency of the absolute magnitude of the fMRI/
BOLD response in order to determine whether data pooling would be
justified.

Materials and methods

Participants

Ninemale and nine female, healthy, right-handed volunteers were
studied once at each of three magnet sites and twice at a fourth site
(mean [range], age: 34.44 [23–53] years; education: 17.06 [12–23]
years). The sample size was chosen so that the lower 0.01 confidence
interval for an ICC at the lower limits of excellent reliability (0.75)
would exceed ICC values at poor levels of reliability (b0.40) (Walter,
1998). All participants were employed, with the largest number of
individuals (eight) working in business, finance, or management jobs.
To be enrolled, an individual needed to have eyesight correctable to
20/20 and be fluent in English. Individuals were excluded from the
study if they had a current or past history of major medical illness,
head injury with loss of consciousnessN24 h, diagnosis of a current
Axis I psychiatric disorder based on a Structured Clinical Interview for
DSM-IV, color blindness, hearing loss, and/or a verbal intellectual
quotient less than 75 on the North American Adult Reading Test (Blair
and Spreen, 1989; First et al., 1997). Although individuals with a past
diagnosis of substance dependence were excluded, those with a
history of substance abuse that did not occur during the past three
months were studied.

Study design

All participants were recruited at a single site where, with one
exception, they were initially scanned. Scan order was then
randomized across the four 3-T magnet sites, with five individuals
receiving their first and second scans at the recruitment site (see
Table 1 for site descriptions). After site staff received training through
webcasts, in-person meetings, and teleconferences, the study quality
officer (BM) qualified each site following an in-person visit, where the
officer himself was scanned. His scans were not included in the
analysis. The order of events at each scan session was documented on
a detailed scanning checklist. Participants were asked to refrain from
the use of recreational drugs 2 weeks prior to each scan session. They
were also to have a normal night of sleep and no more than one
alcoholic drink the day before each scan session and to abstain from
caffeine consumption 2 h before each session, with smokers avoiding
smoking cigarettes in the 40-min period prior to entering the scanner
room.

Procedures

Behavioral tasks
Participants performed a breath hold study and an emotional

working memory task (EWMT). The results of the breath hold study
will be reported elsewhere. A central aim in the development of the
EWMT was to create a task that would determine the impact of
attending to negative emotional stimuli during themaintain period on
subsequent recognition (Fig. 1). Each EWMT block was divided into
passive viewing–fixation, passive viewing–scrambled pictures, en-
code, maintain, and recognition periods. During the encode period,
participants were asked to memorize eight line drawings of common
objects presented serially at 2-s intervals (Snodgrass and Vanderwart,
1980). During the maintain period, eight neutral or eight negatively
valenced photographs were presented, and participants decided
whether the photograph included a human face. Intervening photo-
graphs were obtained from the International Affective Pictures
System (neutral–mean valence rating: 5.48, mean arousal rating:
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3.40; negative–mean valence rating: 2.95, mean arousal rating: 5.43)
(Lang and Cuthbert, 2005). Subjects were asked to detect the
presence/absence of a human face in order to ensure that they
viewed and processed the content of each photograph. During the
recognition period, participants were presented every 2 s with a
screen containing two pictures: one from the previous encode set and
one that had never been presented to the subject. The subject
responded by indicating which of the two pictures they had seen in
the previous encode period. Choices were indicated by a button-press
response. Passive viewing of a fixation cross, not shown, occurred
during the initial and final 6 s; passive viewing of scrambled pictures
presented every 2 s over a 16-s interval, served as the baseline
condition and separated each encode–maintain–recognize cycle. The
order of the two neutral and two emotional maintain blocks within
each 284-s run was pseudo-randomized across the eight study runs.
The EWMT was programmed in CIGAL by the developer (JV) (www.
nitric.org/projects/cigal). At the entry into the study, participants
viewed a webcast to instruct them on how to perform the EWMT.
Directions were reviewed prior to each study session at the remaining
sites.

Imaging protocols
After obtaining localizer scans to confirm head placement, a high-

resolution, 3D sagittal T1-weighted image was obtained using an
inversion–recovery prepared, fast spoiled gradient-recalled sequence
with ASSET calibration at General Electric sites and a magnetization-
prepared rapid acquisition gradient echo sequence at Siemens sites (GE:
FOV 256×256 mm,matrix 256×256, 170 slices, 1.2 mmslice thickness,
TR 7.5 ms, TE minimum full, flip angle 12o, NEX 1, ASSET two phase
acceleration, scan time 4:39; Siemens: FOV 220 mm×220 mm, matrix
256×192, 160 slices, 1.2 mm slice thickness, TR 2300 ms, TE 2.94 ms
(Site C) or 2.92 ms (Site D), flip angle 9o, GRAPPA factor 2, scan time
4:20). Axial T2 weighted structural images were acquired in AC-PC
alignment using a fast spin echo protocol (GE: FOV 220 mm×220 mm,
matrix 256×256, 30 slices, 4 mm slice with 1 mm skip, NEX 2, TR
6000 ms, TE 120 ms, flip angle 149°, echo train 24, ASSET two phase
acceleration, total scan time 1:20; Siemens: FOV 220 mm×220 mm,
matrix 256×256 (Site C) or 256×192 (SiteD), 30 slices, 4 mmslicewith
Fig. 1. Working memory task (WM) with emotional distraction. Each blue square represe
passively viewed scrambled faces. During the encode period, eight line drawings of common
to remember the eight learned pictures while deciding whether intervening pictures incl
composed of either emotionally aversive or neutral pictures. During the recognition probe
encode period. Decisions during the maintain and recognition periods were indicated by a bu
faces cycle.
1 mm skip, TR 6310 ms, TE 68 ms, flip angle 149o degrees, turbo factor
13, GRAPPA factor 2, total scan time 1:24 (Site C) and 1:10 (Site D). Sites
used the vendor standardmethod for slice select for the vendorplatform
employed in the study.

Time series of the T2⁎ – weighted images were obtained while
participants performed eight runs of the EWMT. Scan parameters for
both GE and Siemens were: gradient echo single shot echoplanar
image sequence, axial AC-PC aligned, FOV 220 mmby 220 mm,matrix
64×64, 30 slices in ascending order, 4-mm slice thickness with 1-mm
skip, TR 2000 ms, TE 30 ms, flip angle 77°, 139 active frames with
three equilibration acquisitions with NEX=1 and ramp sampling.
Siemens sites did not use PACE. Images were reconstructed without
the use of k-space or apodization filters, with all filters turned off at
Siemens sites and Fermi filters turned off at GE sites. Throughout the
duration of the experiment, weekly quality assurance scans of an agar
phantomwere acquired at all sites to monitor scanner performance. A
detailed report of these quality assurance data has been submitted for
publication (Greve et al., in press). A pdf of the complete imaging
parameters can be obtained from the authors.

Images were shared across sites by registering the locally stored
image using the Storage Resource Broker (SRB) (www.sdsc.edu/srb/
index.php/Main_Page) using upload scripts and procedures devel-
oped by the Function Biomedical Informatics Research Network
(fBIRN) (Keator et al., 2009). Upload scripts were developed to
register locally stored images and to convert images into the NIfTI-1
format (http://nifti.nimh.nih.gov). FIPS XML files were generated that
linked the image analysis with the registered study ID and stored basic
information about the image protocol, the image analysis, and the
behavioral task (Keator et al., 2006).

Functional contrast
Images were processed with a second-generation version of the

FBIRN Image Processing Scripts (http://nbirn.net/research/function/
fips.shtm), an image analysis pipeline primarily using routines from the
FMRIB Software Library (FSL) (www.fmrib.ox.ac.uk). For each run,
consisting of two neutral and two maintain blocks, the functional time
serieswasmotion and slice-time corrected, high passfiltered, smoothed
by 5-mm FWHM, intensity normalized to 10,000, and spatially
nts an acquired echo-planar volume. Every WM epoch is preceded and followed by
objects are presented at a 2-s rate. During themaintain period, individuals are instructed
uded a human face. The block of pictures presented during the maintain period was
period, individuals decided which of two line drawing pictures was studied during the
tton press. An orientation cross was presented 6 s before and after eachWM-scrambled

http://www.nitric.org/projects/cigal
http://www.nitric.org/projects/cigal
http://www.sdsc.edu/srb/index.php/Main_Page
http://www.sdsc.edu/srb/index.php/Main_Page
http://nifti.nimh.nih.gov
http://nbirn.net/research/function/fips.shtm
http://nbirn.net/research/function/fips.shtm
http://www.fmrib.ox.ac.uk
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normalized by a 12-parameter affine transformation to MNI-152 atlas
space (Collins et al., 1994). The fMRI time series analysis was performed
using FSL's FEAT routine (www.fmrib.ox.ac.uk/fsl/feat5/), modeling
each block type (encode, maintain during presentation of emotional
pictures, maintain during presentation of neutral pictures, recognition
probe following an emotional maintain picture, and recognition probe
following a neutral maintain picture) as separate explanatory variables
using FEAT's default gamma hemodynamic response model and pre-
whitened residuals. The amplitude of functional contrasts, represented
by model regression weights, was derived.

Scan data were not successfully obtained for 14 runs. The missing
runs occurred both early and late in the run series and were
distributed over seven subjects. Because dropping subjects with
missing data from the analysis would have reduced the sample size to
11, we used an in-house regression method to impute voxelwise
values for the missing runs (2.4%). To obtain an estimate of the
missing runs, we formulated a regression model that included 17
indicator variables to code for the effect of subject, 3 indicator
variables to code for the effect of site, and 7 indicator variables to code
for the effect of run. For each voxel, we used R's linear model routine
lm to regress the data available for each contrast analyzed at the run
level onto the above model to obtain 27 regression weights and an
additive constant (http://cran.r-project.org/web/packages/nlme/
index.html). The constant term represented the BOLD response of
the 18th subject on the 8th run at the 4th site. Using these regression
model parameters and AFNI's 3dcalc, we estimated BOLD maps for
each of the 14 missing runs (Cox, 1996). This imputation method
would tend to stabilize the variance components estimates for person,
site, and run, reducing their standard error, while slightly under-
estimating the person-by-site variance compared with a full data set.
Given the small amount of missing data, these imputation effects are
likely to be small.
Statistical analysis
Two functional contrasts were analyzed: recognition versus

scrambled pictures and recognition following emotional distraction
versus recognition following neutral distraction. Findings related to
other contrasts can be obtained from the first author. Given space
limitations, the full analysis is reported only for the recognition versus
scrambled picture contrast. The BOLD response during the recognition
probe was chosen for a complete discussion because performance in
the recognition period reflects the integration of processes occurring
throughout the task and, therefore, is a summary measure of task
functioning.

Voxelwise variance component maps for each of these contrasts
were estimated using in-house scripts calling R's lmer routine. We
used commands from the “Analysis of fMRI Experiments” package to
read AFNI volumes into and out from R routines (http://www.wias-
berlin.de/projects/matheon_a3/) (http://cran.r-project.org/web/
packages/nlme/index.html).

We analyzed the impact of run averaging on between-site reliability
for the two contrasts. In these variance components analyses, person
and site were crossed, with run nested under person–site combinations
(Friedman et al., 2008). The nesting assumed that the BOLD response for
runs occurring at a particular site shared common site variation that
made them more similar to one another than were runs collected at
different sites. Including run in the model permitted the person-by-site
variance component to be estimated separately from the unexplained
term, because variation related to run and its interactions can be used to
estimate unexplained (residual) variance (Brennan, 2001). Given this
design, the total session variance is:

Session variance#run�ave = VD�person + VD�site + VD�person x site

+ VD�unexplained =# runsð Þ ð1Þ
where VD stands for “variance due to”. Between-site intraclass
correlations for different numbers of runs averaged were calculated
as:

Between−site reliability�#runs ave = VD�person= Session variance�#runsave
ð2Þ

Within-site reliability for the two scans obtained at the recruitment
site was calculated in the samemanner except that there was no site or
person×site terms to include in the definition of session variance.

All variance components were estimated by a restricted maximum
likelihood method (Brennan, 2001). We adopted Cicchetti and
Sparrow's (1981) guidelines for judging the clinical significance of
inter-rater agreement as a validated criterion against which to judge
the clinical importance of a particular ICC value: b0.40 poor; 0.40–0.59
fair; 0.60–0.74 good; N0.74 excellent (Cicchetti and Sparrow, 1981).

In addition to calculating variance components for voxelwise data,
variance components of the mean beta weight for regions of interest
were calculated by averaging over voxels. Anatomical regions of
interest relevant to working memory were identified from the
literature and selected for the MNI152 template using the Wake
Forest University PickAtlas (Maldjian et al., 2003, 2004). ROI findings
were provided only for the recognition versus scrambled pictures
contrast.

To determine how a voxel's between-site reliability was related to
themagnitude of activation inpooleddata,we calculated a standardized
effect size, Cohen's d, for averaged data. We first calculated a pooled t-
testmapbyaveraging the recognition versus scrambled picture contrast
over run and sites for each person then calculated a single sample t-
value against the null hypothesis of no activation. From these t-values,
we calculated Cohen's d to estimate effect sizes at each voxel (Cohen,
1988). To test the hypothesis that the observed effect size was
determined at least in part by the between-site ICC, we binned voxels
from the between-site ICC_8 runs ave map into ten masks where the ICC
was≤0.10, 0.11–0.20, 0.21–0.30, 0.31–0.40, 0.41–0.50, 0.51–0.60, 0.61–
0. 70, 0.71–0.80, 0.81–0.90, or 0.91–1.0 (Caceres et al., 2009). Eachmask
was applied to the Cohen's dmap described above with distributions of
the resulting values within each ICC bin presented as box and whisker
plots. Plots are also provided for the number of significantly activated
voxels found in each ICC bin for three significance levels, 0.05, 0.01, and
0.001, uncorrected for multiple statistical tests. To develop some of the
implications associated with different levels of between-site reliability,
we calculated sample sizes required to detect significant activation for
different levels of reliability. Sample size estimates were derived for
Cohen's d values in themedium to large range (0.5, 0.6, 0.7, 0.8) at three
differentα-levels (0.05, 0.01, 0.001) and three levels of statistical power
(0.6, 0.7, 0.8) for a one-tailed, single-sample test. The formula used for
the sample size estimates was:

Z1�α + Z1�β

dCohen
=

ðn−1Þ ffiffiffi

n
p

ðn�1Þ + 1:21ðZ1�α−1:06Þ ð3Þ

where dCohen is Cohen's d for the one-sample t-test; α is a one-tailed
significance value; Z1−α is the value from the cumulative normal
distribution associated with the α-level, and Z(1−β) is the cumulative
distribution value for a particular level of power, 1−β. Eq. (3) was
derived fromDixon andMassey's discussion of statistical power and is a
one-samplemodification of a formula provided by Cohen (Cohen, 1988,
page 545; Dixon et al., 1983, page 310). Specific values of the left side of
the equation were derived from hypothesized values of significance
level, power, and effect size. Sample size valueswere found by using the
R routine nls to estimate n (Ritz & Streibig, 2008). Sample size esti-
mates produced by Eq. (3) were very similar to values Cohen provides
when the hypothesized conditions overlapped with those of Cohen's
tables (Cohen, 1988). The sample plots are approximations that are
meant to provide heuristic information about the relationships among

http://www.fmrib.ox.ac.uk/fsl/feat5/
http://cran.r-project.org/web/packages/nlme/index.html
http://cran.r-project.org/web/packages/nlme/index.html
http://www.wias-berlin.de/projects/matheon_a3/
http://www.wias-berlin.de/projects/matheon_a3/
http://cran.r-project.org/web/packages/nlme/index.html
http://cran.r-project.org/web/packages/nlme/index.html
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the concepts of between-site reliability, effect size, and sample size. The
plots should not be used to plan studies.

Voxelwise significance tests were adjusted to protect against false
positives due to multiple statistical tests by using AFNI's AlphaSim to
determine a cluster volume threshold. Assuming a voxelwise p=0.01
for a 2-tailed test, the AlphaSim simulation set a volume threshold of
1115 mm3 to provide a family-wise error rate of p=0.05. Under the
assumptions given, the simulation determined that at least one cluster
1115 mm3 or larger will occur in less than 5% of replications under the
null hypothesis that no significant activation clusters would be
observed in any brain region.

Results

Recognition probe events versus scrambled pictures

Voxelwise maps
To determine whether the BOLD response changed merely by

being repeated across the four sites, the effect of session order on the
recognition versus scrambled faces contrast was tested with a
voxelwise repeated measures analysis. Because the test revealed no
significant clusters, session order was ignored in the following
analyses.

Voxelwise plots of the site variance component revealed little
variation in most brain regions (Fig. 2A). Voxels in the superior
sagittal sinus, in the most dorsal portion of the superior parietal
cortex, and in the inferior portion of the frontal pole appeared to show
the largest amount of site variation. Voxels in the dorsolateral
prefrontal cortex, superior parietal lobule, angular gyrus, and
supramarginal gyrus showed substantial person variance (Fig. 2B).
Although site variation was generally small compared with person
variation, the person-by-site variance was moderately large in many
brain voxels (Fig. 2C).

Fig. 3 displays the projected impact of run averaging on voxelwise
between-site intraclass correlations. Thesemapswere calculated from
Eqs. (1) and (2). Run averaging increased the between-site intraclass
correlations in most voxels and increased the spatial extent of regions
with good to excellent reliability. Few brain areas reached an excellent
level of between-site reliability unless at least four runs were
averaged. The eight-run ICC (Fig. 3A) showed good (0.60 to0.74) to
excellent (≥0.75) between-site reliability in many voxel clusters,
including the dorsolateral prefrontal cortex, superior parietal lobule,
angular gyrus, and supramarginal gyrus, areas where the person
variance was also large (Cicchetti and Sparrow, 1981). For voxels in
regions, such as the lateral prefrontal cortex and posterior parietal
cortex, where working memory recognition probes would be
expected to activate the brain substantially, the between-site
reliability approached the within-site, test–retest reliability at site D
inmagnitude though not in spatial extent (Fig. 3B) (D'Esposito, 2001).
Areas where the within-site reliability exceeded the between-site
reliability included voxels along brain edges, especially the brain/
background edge of the medial frontal cortex, the vertex of the brain,
the roof of the lateral ventricles, and the left caudate/ventricular edge.
Within-site reliability also exceeded between-site reliability in
anterior temporal region, orbital–frontal cortex, inferior frontal pole,
left occipital–temporal cortex, and cerebellum.

Fig. 4 shows the percentage of voxels found to be significantly
activated as between-site reliability increases for α=0.05, 0.01, 0.001.
In general, a greater percentage of voxels were found to be
significantly activated as reliability increased. The one exception
occurred at the data point for the largest reliability interval with the
most stringent α-level, where few voxels were observed. For the two
lower α-values, the majority of voxels with excellent levels of
between-site reliability showed significant BOLD responses. Although
reliability and likelihood of activation were found to be related, Fig. 4
implies that between-site reliability and activation significance were
dissociated for some voxels. To examine the relationship between
activation effect size and between-site reliability in more detail, we
calculated at each voxel the Cohen's d associated with a one-sample t-
test of the recognition probes versus scrambled pictures contrast. As
shown in Fig. 5A, the relationship of the median Cohen's d to the
between-site ICC is curvilinear, with a model including both linear
and quadratic terms fitting the median Cohen's d value very well,
R2=0.96, pb0.001. Fig. 5B shows the sample size required to detect a
significant effect for effect sizes that vary across the medium to large
range. The sample size required depends on the α-level and the
statistical power desired. For all combinations of statistical power and
significance level, sample size requirements dropped most rapidly as
the effect size improved from 0.50 to 0.60.

Although the relationship between median effect size and
between-site ICC was very strong, there were many voxels where
dissociations between ICC and effect size occurred. We predicted that
regions with poor between-site reliability and large effect sizes would
show attenuated person variation. To investigate this hypothesis, we
created a mask of voxels where the between-site ICC was less than
0.40 and Cohen's d was greater than or equal to 2.0. This mask
included several large, spatially coherent regions. We then applied the
mask to the variance componentsmaps. Themean person variance for
voxels with poor between-site reliability and very large effect sizes
was only 42% as large as the mean person variance averaged over all
brain voxels. The mean of all of the other sources of variation in the
mask was only 4% less than the mean non-person variance sources for
all brain voxels. As predicted, regions with poor between-site
reliability were characterized by greatly reduced variation among
people.

Voxels were also observed where between-site reliability was
excellent and yet effect sizes were small. These voxels tended to group
into small spatially disparate clusters or appear as isolated voxels. We
predicted that for these voxels participants would show consistent
levels of BOLD response within-subjects across sites, but that the
number of individuals with positive BOLD response would be
balanced by the number of individuals showing negative BOLD
responses. To investigate this hypothesis we created a mask of all
voxels where Cohen's d was less than or equal to 0.20 (small effect)
and the between-site ICC was greater than or equal to 0.80 (excellent
clinical reliability). The mask was then applied to the subject-level
percent signal change maps to obtain a mean percent signal change
for each subject at each site. These means are plotted in Fig. 6. As the
figure shows, when ICC is large yet effect size is small, many
participants displayed consistent BOLD response across sites, with
nearly equal numbers of individuals having displayed positive
responses as displayed negative responses. To determine whether
the consistently negative values across sites might be associated with
consistently poorer model fits across sites, we compared the squared
standard error of the contrast of recognition probe versus scrambled
pictures for the subject with the most extreme negative BOLD value
against the subject with the most extreme positive value. The squared
standard error for the subject with the most negative BOLD response
was 53% to 91% greater across the four sites than the squared standard
error for the subject with the largest positive BOLD response.

Regions of interest
The five a priori identified ROIs were studied, as well as a large area

of significantly negative BOLD response in the ventral medial
prefrontal cortex. In five of six ROIs, the person variation was at
least 10-fold larger than the site variation (Table 2). The person
variation was more than 20-fold larger than the site variation in four
ROIs. Residual variance was the largest source of variation for all ROIs
(Table 2). Fig. 7 shows the rate of increase in the between-ICC
reliability due to run averaging for the six ROIs. For all ROIs, the
projected between-site reliability of a single run was poor (see http://
www.bieegl.net/fbirn/ects/predicted vs true.zip for additional detail).

http://www.bieegl.net/fbirn/ects/predicted
http://www.bieegl.net/fbirn/ects/predicted


Fig. 2. Variance components for the recognition probe versus scrambled faces contrast.
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For all ROIs, the between-site ICC reached a fair level of between-site
reliability by four runs, although seven to eight runs were required to
attain a good level of reliability for the more reliable ROIs.

Recognition following emotional distraction versus neutral distraction

Voxelwise between-site ICCs for the contrast of recognition probes
following emotional versus neutral distraction are presented in Fig. 8.
Although run averaging increased the between-site ICCs, between-
site reliability in most voxels was much lower when contrasting BOLD
response for recognition probes following emotional versus neutral
distraction than when recognition probes were contrasted with
scrambled pictures. When averaging reached eight runs, ICCs in
some areas approached the lower limit of the fair reliability range. The
difference between within-site and between-site reliability (not
shown) revealed the brain edge effects seen in the previously
described contrast and edge effects at gray matter/white matter
boundaries. Greater within-site reliability was also observed in the
orbital frontal cortex, in a few voxels in the left amygdala, in the body
of the cingulate gyrus, and in the inferior parietal cortex.

Discussion

Between-site reliability of the BOLD response elicited by working
memory conditions can be good to excellent in many brain regions,
although the extent of reliability depends on the specific cognitive
contrast studied, the number of runs averaged, and the brain area
investigated. In five of six regions of interest studied, variance
associated with people exceeded site variance by least 10-fold.
There is now evidence from several multisite variance components

image of Fig.�2


Fig. 3. Data from the recognition probe versus scrambled faces contrast. (A) Between-site reliability for increasing numbers of runs averaged. (B) Within-site, between-session
reliability for eight runs averaged at the site where scans were repeated (site D).
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analyses of BOLD data showing that mean differences in BOLD
response across sites need not overwhelm the measurement of
individual differences (Costafreda et al., 2007; Gountouna et al., 2010;
Suckling et al., 2008). When adding the results of the present study to
previous studies, variance components analysis has found person
variance to be much larger than site variance in the primary motor
region, striatum, prefrontal cortex, dorsal anterior cingulate, amyg-
dala, angular gyrus, and supramarginal gyrus (Costafreda et al., 2007;
Gountouna et al., 2010). In the present study, we also found a medial
prefrontal region where the BOLD response was negative yet the ratio
of person to site variance was large (~9.8), suggesting that at least
some areas involved in resting or intrinsic networks might also be
reliably suppressed with external stimulation. It is likely that
individual differences in BOLD response in other brain areas will
similarly be found to be consistently measured in future multisite
reliability studies.

There are several qualifications to the generalization that individ-
ual differences can outweigh site differences by an order of magnitude
in fMRI studies. Because the magnitude of the BOLD signal is strongly
dependent on field strength, the finding that site variation contributes
only a small portion to the total measured variation in multisite fMRI
studies is likely to be limited to studies using scanners at the same
field strength (Cohen et al., 2004; Ogawa et al., 1998). Additionally,
the amount of potentially observable person variation, and therefore
the size of the associated multisite ICC, can be limited by a restriction
of range associated with oversampling very similar people (Brennan,
2001; Cronbach, 1970). Restriction of range might have constrained
between-site reliability in a previously published fBIRN study, where
only well-educated males in their twenties were studied (Friedman
et al., 2008). In that study, magnets, not persons, were the targeted
objects of measurement. In the present study, a considerable effort
was invested into maintaining high image quality across magnet sites.
Probably as a result of this quality assurance effort, the percent
variation associated with site was generally smaller in the present
study than in our previous variance components study (Friedman
et al., 2008). When careful quality assurance methods are in place,

image of Fig.�3


Fig. 4. Percent of voxels in a particular between-site reliability bin significantly
activated at three different levels of significance based on the pooled t-test of
recognition versus scrambled contrast. Reliability intervals were based on the eight-run
between-site reliability map.

Fig. 6. Mean percent signal change for voxels with high between-site reliability and
small effect sizes. Solid lines represent the performance of each subject at each of the
four study sites.
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demographically varied people are enrolled, and magnets at the same
field strength are used, studies of between-site reliability of fMRI data
are likely to find much smaller site variance than person variance.
Fig. 5. (A) Effect size (Cohen's d) by binned intervals of between-site reliability. The
effect size value was derived from the single-sample t-test comparing recognition
probes with scrambled pictures. The between-site reliability values were obtained from
the eight-run between-site reliability maps. See Fig. 3A. (B) Sample sizes required to
detect a significant effect for a one-tailed test at three α-levels and three levels of power
for medium to large effect sizes (Cohen's d, 0.5 to 0.8).
There were, nonetheless, brain regions were site variation was
relatively large. One area of relatively large site variation followed the
expected course of large veins along the medial brain surface. The
greater content of deoxyhemoglobin in these large sagittal veins is
likely to reduce signal intensities within the veins relative to arteries
and arterioles and to create susceptibility differences that would alter
signal in surrounding tissue (Haacke et al., 2004; Kawabori et al., 2009).
Signal drop out was apparent on our echoplanar images in the regions
of the superior sagittal sinus and in the confluence of the superior,
straight, occipital, and transverse sinuses. Such physiological suscepti-
bility effects might have intensified native differences in field
homogeneity at different magnet sites (De Guio et al., 2008). Variation
in the superior parietal regions appeared to be related, on occasion, to
site differences in the care taken to place participants inside the field of
view. The larger site variation observed in the frontal pole might have
been due to different tendencies of the head to pitch at difference sites
as a result of differences in neck support and to differences in shim
quality.

Although differences in the mean BOLD signal across sites
contributed little to the overall variation in BOLD values in most brain
areas, in both the voxelwise maps and ROI analyses, the person-by-site
interaction contributed substantial variation to the total. Person-by-site
variation is introduced whenever the rank ordering and/or distance of
the BOLD response among individuals varies across magnet sites,
producing a second unwanted source of variation involving site. For the
ROIs studied, theperson-by-site interactionswere at least 6-fold greater
than site variation for the more reliable of the two functional contrasts
studied. Person-by-site effects might have been mediated in part by
long-term learning effects present in the data if session order had been
fixed across sites. Although there was no evidence of substantial long-
term learning effects in our activationdata, the randomization of session
order across sites in thepresent studywouldhave reduced the impact of
Table 2
Between-site variance component estimates as a percentage of total raw variance for
various regions of interest: recognition versus scrambled faces contrast.

Source of variation

Region of interest Person
variance

Site
variance

Person-by-
site variance

Residual
variance

Dorsolateral prefrontal cortex 37.54 2.32 14.28 46.91
Anterior negative response region 20.89 2.14 15.04 60.81
Dorsal anterior cingulate 27.28 0.83 8.42 62.79
Angular gyrus 38.71 0.58 15.57 44.96
Supramarginal gyrus 33.06 0.60 12.39 53.71
Superior parietal lobule 39.03 1.55 18.41 40.57
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Fig. 7. Intraclass correlation (ICC) for the recognition probe versus scrambled faces contrast in selected regions of interest as a function of the number of runs averaged.
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long-term learning effects on estimates of themagnitude of the person-
by-site interaction.

Large person-by-site interactions would depress the between-site
reliability coefficient, if all other sources of variance are equal (Brennan,
2001). When the person-by-site interaction is large relative to person
Fig. 8. Between-site reliability for incr
variance, the ordering and/or distance among people will vary across
site. The lack of stability introduced by the person-by-site interaction
would attenuate correlations between the BOLD response and external
variables, such as symptom scales, and would reduce the accuracy of
predictions about treatment response or illness course (see Costafreda
easing numbers of runs averaged.

image of Fig.�7
image of Fig.�8
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et al., 2009 for an example of a treatment response study). Large person-
by-site variance relative to person variance, therefore, is a threat to the
robustness of data collected in multi-site studies even when site
variance is small. There are many potential sources of person-by-site
variance in fMRI studies, includingevolvingdifferences in the stability of
study magnets or differential care in subject placement within the field
of view at the various study sites. Individual differences in performance
consistency and compliance across study sessions could also alter the
rank ordering of the BOLD response of individuals across sites and lead
to an increase in person-by-site variance (Carron, 1971; Nevill and
Copas, 1991; Shavelson et al., 1989; Shoda et al., 1993).

In a previous fBIRN variance components analysis of BOLD percent
signal change data, person-by-site interactions exceeded site variation
only for 3-T magnets (Friedman et al., 2008). In Gountouna's study of
1.5-T scanners, the person-by-site interaction was greater than the site
variance for only one of the three ROIs studied (Gountouna et al., 2010).
As the sensitivity of the BOLD signal to small signal changes increases
with increasing field strength, subtle differences in the between-subject
rank order or between-subject distance across sites seems to become
more apparent. As fMRI research moves to higher field strengths,
person-by-site interactions are likely to contribute an increasing amount
of unwanted variance to total study variation, unless steps are taken to
counter this source of variability. Experimental control of the subject's
physiological state, standardized study conditions and instructions,
and quality assurance monitoring and correction of equipment drift
might prove to be useful methods to reduce person-by-site variation.

For contrasts that lead to robust activation, between-site reliability
approachedorequaledwithin-site reliability in somevoxels. Therewere
many areas, nonetheless, where within site reliability was greater than
between-site reliability. For both of the contrasts studied, within-site
reliability was greater than between-site reliability along brain edges.
This effectwas commonly observedon themid-sagittal slice. These edge
effects suggest that when multiple images obtained from a single
subject are registered into standard space, the registration process
might be somewhat less successful when images are collected at
different sites than when they are collected at the same site. Other
regions where within site reliability exceeded between-site reliability
included frontal areas where signal dropout is typically observed. The
lower between-site reliability in areas of signal dropoutmight be due to
differences in signal attenuation geometry across magnet sites. For
contrasts that involved the comparison of negatively valenced and
neutral pictures, within-site reliability was greater than between-site
reliability in areas involving the processing of emotional stimuli, such as
the amygdala and subgenual cingulate cortex. Possibly environmental
differences between-sites evoked somewhat different baseline emo-
tional states that interacted with the emotional content of the
experimental stimuli. Alternatively, differing degrees of susceptibility
related drop out might have caused the MR signal to vary in the
amygdala and subgenual cingulate cortex across magnet sites. In the
present study, assessment of the stability of data across occasions was
only assessed at one site. To determine whether within-site reliability
varied across sites, we would have had to scan participants on at least
two occasions at each site. Given the variance components model
described in Eq. (1), the impact of potential site-by-occasion interac-
tions on our data would have been included in the unexplained term
with larger interactions reducing between-site reliability if other
variance components terms were unchanged.

Increasing the number of runs averaged during a scanning session
has been found to increase between-site reliability and statistical power
of BOLD data obtained from regions of interest (Friedman et al., 2008;
Suckling et al., 2008). The present study corroborates the beneficial
effect of run averaging on between-site reliability of ROI data and
extends the finding to the voxel level of analysis. In the present study,
one run of a working memory task with emotional distraction led to
poor ICCs in nearly all brain areas, even for the more reliable of the
functional contrasts studied. Moreover, few brain areas reached a good
to excellent level of between-site reliability on the ICC maps unless at
least four runs were averaged. The general principle that greater run
averaging improves reliability assumes that all runs are sampled
from the same population of runs (Brennan, 2001; Magnusson, 1966).
Systematic run effects such as practice effects, attention level and
fatigue, dissimilarities in the items presented across runs, varying
intervals between runs, and equipmentdrift are examples of factors that
mightundermine the run samplingassumption (Cronbach, 1970). Some
of these potentially confounding factors can be lessened by considering
the impact of massing versus distributing runs within a session and by
practicing subjects to a criterion level of performance before each scan.
Run averaging increases between-site reliability by increasing within
site reliability and by reducing measurement errors within a site
(Suckling et al., 2008). In addition to run averaging, the behavioral
literature discusses techniques, such as item analysis and tailored
testing, that might be usefully explored in future reliability studies of
functional brain imaging (Cronbach, 1970; Wainer, 1990).

Because run averaging improved between-site reliability, the results
of the present study have implications for study design, especiallywhen
considering the tradeoffs between thedurationof a task and thenumber
of subjects to be studied given a fixed budget (Mumford and Nichols,
2008). The effect of between-site reliability on sample sizewas indirect,
reflecting the influence of reliability on effect size and the impact of
effect size on sample size. Fig. 3A shows that the between-site reliability
of most voxels fell below 0.5 when only one run was averaged even in
areaswhere the taskwould beexpected to activate thebrain. For theROI
data, reliability was even worse when one run was averaged (Fig. 7).
What then is a reasonable tradeoff between number of runs and sample
size for fMRI studies using our emotional working memory task? This
question is easier to answer for the ROI data. In Fig. 7, a single run is
associated with a median between-site reliability value of about 0.35.
Fig. 5A shows that a between-site reliability value of 0.35 fell into a
reliability interval associatedwith amedianCohen's dof about 0.57. This
effect size is associatedwith a required sample size of approximately 54
to detect a significant effect at α= 0.001 with a power of 0.80. What if
the number of runs was increased to four? Four runs averaged is
associated with a median between-site reliability of about 0.58 across
the six ROIs in Fig. 7, which in turn is associated with an effect size of
about 0.68. To detect a significant effect of 0.68 requires a sample size of
approximately 38 at α=0.001 with a power of 0.80, a savings of about
30%. Further increases in reliability related to run averaging produce
diminishing returns with the median effect size not exceeding 0.70 for
reliability values less than 0.90. It appears then that for a fixed budget
the investigator might more efficiently increase statistical power by
doubling the sample size, producing a
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increase in effect size, rather
than doubling the number of runs for each subject from four to eight.
Mumford and Nichols (2008) provide a systematic framework from
which to consider the tradeoff between task duration and sample size.
For the task they studied, there was little gain in power for each on/off
cycle after acquiring about 14 cycles. For our task, each run contained
four recognition probe cycles. Fourteen cycles would be achieved
between three and four runs. The results from the present study
converge with Mumford and Nichols' analysis to show that there are
limits to the use of run averaging to increase statistical power. The
present results, however, are limited to the question of the power to
detect whether mean activation differs from zero and limited to the
recognition versus scrambled pictures contrast. A second important
question is how reliable a measure should be to provide robust
correlations with an external variable. The present study does not
address that question.

Between-site reliability varied across the two functional contrasts
studied. The contrast comparing recognition against scrambled
pictures was associated with larger between-site ICCs than the
contrast comparing recognition probes following emotional versus
neutral distraction. These results supported the hypothesis that
contrasting an experimental condition against a low-level control
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task is likely to lead to larger between-site reliability coefficients than
contrasting an experimental task with a high level control task. The
more reliable contrast, however, was also driven by data from twice as
many trials within a run than was the less reliable contrast. Greater
trial run density as well as the nature of the control condition might
have contributed to the larger between-site ICCs of our more reliable
functional contrast.

In both the present study and in Caceres and colleagues' within-site
reliability study, central tendency summaries of effect sizewere strongly
related to reliability (RN0.95), although the relationship in Caceres and
colleagues' studywasmore linear (Caceres et al., 2009). In both studies,
nonetheless, moderately large effects were observed in some brain
regions evenwhen associated reliabilities were in the 0.3 to 0.5 range.
Among voxels in the current study where effect sizes were large even
though between-site reliability was poor, between-subject variation
tended tobe small. For voxelswhere effect sizeswere small even though
between-site reliability was large, individuals with consistently nega-
tive and consistently positive BOLD responses across sites tended to be
equally represented in the data. Brain voxels where reliability was high
even though effect size was small have been reported in studies of
within-site reliability, where the mismatch between reliability and
effect sizewas attributed to the consistently poor fit of the designmodel
to the acquired time series (Caceres et al., 2009). In support of this
hypothesis, theparticipant in thepresent studywho respondedwith the
most negative response in the region of good reliability and small effect
size showed consistently larger standard errors across sites for the
recognition probe/scrambled faces contrast than the participant with
the largest positive response in this region. The fBIRN group is currently
completing an analysis of the between-site consistency of the EPI wave
forms generated in the current study to examine more thoroughly
reasons for reliability/effect size mismatches. The finding that effect
sizes and reliability coefficients might be dissociated at times in
reliability studies implies that both effect size and reliability coefficients
should be calculated from preliminary studies performed to provide
data needed to design large-scale, multisite studies.

The magnitude of the BOLD response can be measured across sites
with good to excellent reliability at voxel and ROI levels of analysis.
With appropriate use of experimental control and proper use of
quality assurance techniques, functional imaging data collected from
between-site fMRI studies can be as consistent as data collected from
between-rater studies of behavioral outcomes. These results support
the pooling of fMRI data across sites for the task analyzed, although
only for some brain regions. An implication of the regional limitations
of pooling is that the spatial distribution of correlations between the
BOLD response and a covariate, such as a genotype, will reflect how
well the reliability map matches the neurobehavioral systems
corresponding to the covariate. In regions with poor reliability,
individual differences will be small relative to other sources of
variation, restricting the size of potential correlations with a covariate
(Magnusson, 1966). Even when reliability is excellent, accounting for
site in the analysis rather than simply pooling data can be useful when
it is not possible to balance the enrollment of critical subject groups
across sites. Accounting for site in the statistical analysis model would
not only some of reduce the remaining contribution that site
differences would otherwise make to error terms in the statistical
model, it would also allow investigators to study the interaction of site
with subject grouping variables, such as diagnosis. By attending to the
determinants of multisite reliability of fMRI data and by using
appropriate statistical models, fMRI data from multisite studies are
likely to produce important neuroscience findings involving large
samples that would be difficult to recruit at a single site.
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