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Longitudinal image processing procedures frequently transfer or pool information across time within subject,
with the dual goals of reducing the variability and increasing the accuracy of the derived measures. In this note,
we discuss common difficulties in longitudinal image processing, focusing on the introduction of bias, and
describe the approaches we have taken to avoid them in the FreeSurfer longitudinal processing stream.
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Over the past decade an increasing amount of longitudinal image
data has becomeavailable,where twoormore scans are collectedon the
same subject over a period of time. Compared with cross-sectional
studies, a longitudinal design can significantly reduce the confounding
effects of inter-individual morphological variability by using each
subject as his or her own control. As a result, longitudinal imaging
studies are increasing in popularity in both basic neuroscience and
clinical studies. In vivo cortical and subcortical measures are useful as
biomarkers of the evolution of many neurodegenerative diseases, and
are thus of great potential utility in evaluating the efficacy of disease-
modifying therapies. For these reasons, it is critical to obtain robust and
reliable morphological measurements by incorporating additional
temporal information within a longitudinal processing stream. The
expected reduction in variability of automatic measurements allows
studies with smaller sample sizes to detect effects with the same power
and significance level or provides increased sensitivity, necessary to
detect small effects in drug trials.

A common issue with longitudinal image processing is the
introduction of bias, leading to incorrect results and a potentially
flawed interpretation of outcome measures. The recent critique by
Wesley K. Thompson and Dominic Holland (2011), for example,
points out a bias potentially due to inconsistent image registration
with baseline images in the work published by Hua et al. (2010)
hinting at severe underestimation of sample sizes. Bias can be
introduced due to several different reasons, some of which can be
controlled and are inherent to the processing stream, while others are
introduced earlier, e.g., in the acquisition when scanning different
time points on different scanners, software versions or with different
scanning parameters. Salat et al. (2009) and Westlye et al. (2009)
describe another source of potential bias of more general nature: the
intrinsic magnetic properties of the tissue (e.g., T1, T2*) can change
over time in aging and also neurodegenerative disease, possibly
introducing bias in measures of thickness or volumes in both
longitudinal or independent (cross sectional) processing. In the
following paragraphs we will focus on three common situations of
bias introduced by different treatment of the input time points
(usually the baseline image) and describe the steps taken to avoid
them in the current FreeSurfer longitudinal processing stream (http://
www.ssurfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing,
Reuter et al., 2010). A detailed description of the longitudinal stream
in FreeSurfer will be subject of a different paper.

Biased registration (lack of inverse consistency)

In order to study differences across time within the same subject,
images are frequently registered using either a rigid or affine
registration or higher dimensional non-linear warps. Typically, a first
step is to remove pose differences due to varying head positions and
orientations in the scanner. For this, a rigid registration is performed, to
correct for translational and rotational differences (in somecases 9 or 12
degrees of freedomormore complex combinations are used to allow for
additional scaling to account for factors such as differential scanner
calibration, e.g., Smith et al. 2001).

Many contemporary registration algorithms may introduce a bias as
they are not designed to be inverse consistent. Here, inverse consistency
means that oneexpects to obtain the inverse transformwhen registering
B to A as opposed to A to B. Several inverse consistent approaches exist
for nonlinearwarps. Often, both forward andbackwardwarps are jointly
estimated, e.g., (Christensen and Johnson, 2001; Zeng and Chen, 2008),
while others match at the midpoint (Beg and Kahn, 2007). Symmetric
pairwise registration is, for example, used in Avants et al. (2007) and
Nakamura et al. (2011). Avants et al. (2007) use a non-linear registration
(SyN) to construct a spatiotemporal parametrization; however, for
longitudinal processing, the baseline is treated as a reference frame,
differently from follow-up images, and the1 year image is sampled from
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the spatiotemporal diffeomorphism. Nakamura et al. (2011) combine
forward and inverse linear registrations to construct symmetric pairwise
registrations, but register all follow-up images to baseline. We will
discuss the possibilities of introducing bias via interpolation asymmetry
or different treatment of specific time points in the sections below.

In the rather simple rigid registration case, inverse consistency is
often tacitly assumed, but as shown in Reuter et al. (2010), it is not
necessarily guaranteed. In order to avoid the introduction of this type of
bias we developed a robust rigid registration method, as described in
thatpaper, inwhichboth the algorithmand themathematicalmodel are
designed to be symmetric bymapping source and target images to a half
way space. In several rigid registration tools, one image (source or
movable) is resampled internally to the space of the target image,which
destroys the symmetry. Our approach avoids the construction of both
forward and inverse transforms. Furthermore, based on robust statistics
(Nestares and Heeger, 2000), our algorithm increases the accuracy of
the registration by reducing the influence of outlier regions (different
jaw, neck, eye positions, motion artifacts, morphological change such as
atrophy or tumor growths, or differences induced by the imaging
technologies, such as gradient non-linearities). This is achieved by
iteratively detecting and ignoring real image differences that cannot be
accounted for by the registration.

Biased resampling space (interpolation asymmetry)

Longitudinal studies frequently acquire more than two images for
each subject. In order to reduce variability and detect true change in
structure or function, it is important to be able to transfer and share
information across time. A standard way of constructing spatial
correspondence is to register all follow-up images to the baseline
scan. The images are then either resampled at that location or the
inverse maps are used to transport information into native voxel
spaces. Either way, even when using an inverse consistent pairwise
registration tool, the baseline scan is used as a reference frame and
therefore is treated differently from the other time points,
introducing a potential bias. For example, resampling other time
points to the baseline will smooth these images and of course alter
any downstream measurements. This typically results in different
(usually steeper) slopes in the rate of change between baseline and
time two, than between the follow up images. The effect of this bias
can easily be verified by choosing a different time point as the
registration target and observing the corresponding change in slopes.
Yushkevich et al. (2010) also documented this type of bias, likely due
to the asymmetric interpolation in the linear registration pre-
processing step.

In order to avoid this type of effect, it is essential to treat all time
points identically and ensure they undergo the same degree of
smoothing due to image interpolation. In FreeSurfer, for example, we
resolve this problem by creating an unbiased within-subject template
space for the common registration of all input images of the given
subject. Resampling all inputs to the same voxel space further reduces
variability ofmeasurements. Note that for the specific case of two time
points Smith et al. (2001) already avoided this type of bias by
resampling both input images at the midpoint (half way space) after
the (not necessarily inverse consistent) registration procedure. Also,
see Joshi et al. (2004) and Avants and Gee (2004) for a similar
approach in unbiased non-linear atlas creation, warping several
images to a mean shape.

Biased information transfer

As described above, information is often transferred across time
within each subject. For example, a common skull strip or shared
Talairach transform can significantly reduce variability. Cortical and
subcortical segmentation and parcellation procedures involve
solving many complex nonlinear optimization problems, such as
deformable surface reconstruction, nonlinear atlas-image
registration, and nonlinear spherical surface registration. These optimi-
zation problems are typically solved with iterative methods, and the
final results are known to be sensitive to the selection of a particular
starting point. Therefore, initializing later time points with earlier
results (e.g., typically the baseline) will certainly improve the
consistency, but at the cost of introducing a bias, as again the baseline
image is treated in a fundamentally different manner than subsequent
time points.

Possible solutions to remove this bias exist. One is to design the
algorithms to optimize all time points simultaneously. Xue et al.
(2006) aim in this direction and jointly segment the 4D volume
within subject, but they also treat the baseline scan differently from
follow-up images by using it as the reference frame for their
registration. Unbiased simultaneous processing often involves a
complete redesign and can be quite time consuming. Furthermore,
memory usage is scaled by the number of time points, which
implies that hardware requirements may not be met by standard
desktop computers. A different approach is to create an unbiased
subject template to describe the average subject anatomy across
time. This template can be fully processed and many of the results,
e.g., surface locations, can be used to initialize all the time points
independently. For this purpose, FreeSurfer uses a robust median
image of the co-registered inputs mapped to the unbiased template
space.

Additional comments

Any of these biases can, of course, be removed by independently
processing the inputs at the cost of increased variability. As soon as
longitudinal information is incorporated as “prior knowledge,” bias is
introduced, for example due to temporal smoothing, and accuracy
may suffer particularly when measuring large longitudinal change.
Therefore, it is theoretically possible that changes of greater
magnitude are underestimated by initializing each time point with
common information from the template as done in FreeSurfer. While
a more conservative estimate of change is often preferable in a power
analysis, than an overestimation, we aim for accurate and unbiased
results. The longitudinal stream in FreeSurfer therefore allows for
more flexibility by using a probabilistic voting scheme of
independently processed label maps from all time points, to
determine the probability of a specific voxel having a specific label
by weighting labels across time according to their intensity similarity.
This fused segmentation is usually very similar to the time point's
independent segmentation (slightly temporally smoothed). It is not
the final solution, but then used to initialize the segmentation
algorithm for each time point instead of the fixed segmentation of
the subject template to allow for larger departures from the subject
average, evident, for example, in several years of neurodegeneration.

Also note that, as soon as longitudinal data is employed, one needs to
delay processing until all time points are available to remain unbiased.
This is often not feasible and it is of course possible to add time points
later and process themwith the “old” template, created from the initial
subset of time points. While this is clearly introducing bias, it is unclear
how large the effect will be and likely depends strongly on the specific
situation (e.g., how many time points were used for the template
creation andhowmanywere added, etc.). Reprocessingeverythingwith
a new template can change earlier results as the new templatemight be
shifted towards a more diseased state. However, we believe it is
favorable to have the template somewhere in the middle of the time
series than closer towards the front, in order not to be biased towards a
more healthy state.

The above discussion highlights several challenges of longitudinal
image processing and underlines the importance of selectingmethods
carefully to avoid introducing a bias by treating individual inputs
differently, which can be prevented, or by biasing towards no change
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when encouraging reliability too intensely. For the second case, a
good trade-off needs to be aimed for.
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