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The Bias/Variance Trade-Off When Estimating the MR
Signal Magnitude From the Complex Average of
Repeated Measurements

M. Dylan Tisdall,1,2*, Richard A. Lockhart,3 and M. Stella Atkins4

The signal-dependent bias of MR images has been considered
a hindrance to visual interpretation almost since the beginning
of clinical MRI. Over time, a variety of procedures have been
suggested to produce less-biased images from the complex
average of repeated measurements. In this work, we re-evaluate
these approaches using first a survey of previous estimators in
the MRI literature, then a survey of the methods statisticians
employ for our specific problem. Our conclusions are substan-
tially different from much of the previous work: first, removing
bias completely is impossible if we demand the estimator have
bounded variance; second, reducing bias may not be beneficial
to image quality. Magn Reson Med 000:000–000, 2011. © 2011
Wiley-Liss, Inc.
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INTRODUCTION

MRI magnitude images are constructed from noisy mea-
surements of some presumed “true” signal magnitude at
each voxel in the subject. An estimator is a function which
takes the noisy measurement as its arguments and returns
an estimate of the “true” value. In the context of MRI, we
use an estimator function to estimate the values of the
“true” signal magnitude at each voxel and then render an
image of these estimates. The quality of the estimator func-
tion used is then of great importance in determining the
quality of the resulting image.

An estimator is biased if “true magnitude” s is, on aver-
age, mapped to an estimated value ŝ �= s; the bias is then
bŝ = ŝ − s. An estimator is said to have a signal-dependent
bias if bŝ varies with s. In the context of MRI images, this
could, for example, reduce contrast by overestimating the
magnitude in low-magnitude regions. This is, in fact, a
known issue: interest in the signal-dependent bias of MRI
magnitude images seems to have first appeared, along with
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the earliest attempt to compensate for it, in work by Henkel-
man (1,2). However, the recognition that the magnitude of
a quadrature MRI measurement has a Rician distribution,
and this distribution’s link to the signal processing litera-
ture, was first noted by Bernstein et al. (3), who proposed
that correcting the Rician’s bias would improve image con-
trast and in turn improve feature detectability. Several
authors have since suggested techniques for correcting or
reducing the bias of a Rician-distributed MRI magnitude
measurement (4–10), in addition to related previous work
on this problem in other disciplines (11–14).

The problem of bias correction can be thought of in
statistical terms as the construction of an estimator func-
tion taking the measured data as its arguments and giv-
ing an estimate of the magnitude where the function’s
bias varies slowly—ideally not at all—as the “true” sig-
nal varies. It is important to note that these estimators
are only tasked with correcting for the measurement con-
tribution due to thermal noise. Artifacts (e.g., ghosts) are
not considered noise for the purpose of these estimators
but are lumped in as part of the “true” signal. Although
ghosts and other artifacts almost always have a structured,
systematic influence on the measurements, the thermal
noise is a stochastic contribution to the measurement
and is thus particularly amenable to statistical estimation
methods.

Several related estimation problems have arisen in the
MRI literature from this basic setup, so we will begin
by surveying them and carefully specifying the estima-
tion problem that we are interested in for the remainder
of this work. Our chosen estimation problem has been
well-studied in the MRI literature, but we make three con-
tributions here. First, we survey the previous work and
contextualize it with the suggested methods from statis-
tical estimation theory, along the way introducing a novel
estimator [the mean Bayesian (MB) estimator]. Second, we
introduce a novel bound on estimator performance for our
chosen problem with Eqs. 32 and 33, and their exten-
sions in the Appendix. This bound imposes a trade-off
between bias and variance for any possible estimator in
our problem, and any improvement beyond the bound must
come from the inclusion of prior information (e.g., smooth-
ness assumptions). Third, we analyze the estimators from
the previous literature, and the new estimator we present,
relative to this bound.

Before we describe the estimation problem under study,
we need a model of the thermal noise. All of the estima-
tors we are interested in rely on a common probabilistic
model: measurements in quadrature MRI are assumed to
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consist of two independent channels, each corrupted with
the addition of zero-mean gaussian noise (1,6,15–17):

p(a, b; s, φ, σ) = 1
2π σ2 exp

(
− (a − s cos φ)2 + (b − s sin φ)2

2σ2

)
.

[1]

In our notation here, a and b are the random variables
for the measurements in the real and imaginary chan-
nels respectively, s and φ are the true signal magnitude
and phase (where “true” phase is due, for example, to
B0 inhomogeneity), and σ is the standard deviation of the
thermal noise. If we represent our measurements in polar
coordinates, we have

p(r, θ; s, φ, σ) = r
2πσ2 exp

(
− s2 + r2 − 2sr cos(θ − φ)

2σ2

)
, [2]

where r and θ are the random variables for the measured
signal magnitude and phase.

A family of similar-looking estimation problems can be
generated from this model depending on what assumptions
are made about the signal. In the following, we assume that
s and φ are always unknown and σ is always known.

1. r and θ are measured one or more times at each voxel.
We assume that s, φ, and σ are constant for all mea-
surements at each voxel. We want to estimate the
unknown s at each voxel and ignore the unknown φ.
This form of the problem has been addressed by sev-
eral groups (1,4–6,9). Under the additional assump-
tion that the unknown φ is slowly varying spatially,
this problem has been addressed by several groups
(3,18–20); instead, with a spatial local-smoothness
constraint on s this problem has been addressed by
(21,22).

2. r is measured one or more times at each voxel (θ is not
measured). We assume that s and σ are constant for
all measurements at each voxel as we allow φ to vary
between measurements. Estimation of the unknown s
while ignoring the unknown φ has been addressed by
Sijbers et al. (8,9).

There are many more permutations of this problem struc-
ture; others are addressed in (6,9,10,23–25).

In this work, we are interested solely in the prob-
lem of estimating the true signal magnitude from single-
channel quadrature MRI measurements without assuming
spatial smoothness—where only measurements from a sin-
gle voxel are used in the estimation of the true signal
magnitude at that voxel. We assume that we have taken one
or more measurements of the pair (r, θ) for our voxel of inter-
est, and that the unknown s, φ, and σ are constant for all
measurements of our voxel. Our goal is to estimate s while
ignoring φ and σ. We will represent our measurements via
the measurement lists �r = [r0, . . . , rn] and �θ = [θ0, . . . , θn] or
alternatively �a = [a0, . . . , an] and �b = [b0, . . . , bn].

Additionally, although s and φ vary between voxels, we
note that, for a given volume, σ is fixed for all measurements
of all voxels as the thermal noise results from processes
unrelated to the sampling location in k-space (15). This
fact makes σ particularly easy to estimate. Any region of
homogenous true signal magnitude (usually a region of air
where it is known that s = 0) can be used to produce an
effective estimate of σ. Alternatively, a series of noise-only

measurements can be quickly generated with the subject in
the scanner by acquiring data without an excitation pulse or
gradients. Based on this, many of the previous estimators
have assumed that σ is effectively known, and remove it
from their models’ parameters, treating it as a fixed, known
value (1,4–6,8,9). In the remainder of this article, we will
similarly treat σ as known.

We will use the notation ŝ(�r, �θ) to represent an estimator
for the unknown s at a voxel where the n-length list (�r, �θ) of
measurements was acquired. Two estimators are most-used
for our problem. First,

ŝMag(�r, �θ) = 1
n

√√√√[
n−1∑
i=0

(ri cos θi)

]2

+
[

n−1∑
i=0

(ri sin θi)

]2

, [3]

is commonly called a “magnitude image.” This estima-
tor averages the complex measurements and subsequently
takes the magnitude of the average. An alternative formula-
tion that also goes by the name “magnitude image” is given
by first taking the magnitude of each measurement and then
combining via sum-of-squares:

ŝMagAlt(�r) = 1
n

√√√√n−1∑
i=0

r2
i . [4]

It is important to note that these two estimators will not
generate the same image and that the resulting “magnitude
images” will have different noise distributions in general.
Under the assumptions we have given for our problem, ŝMag

has a Rician distribution while ŝMagAlt has a noncentral-
χ distribution with 2n degrees of freedom—these two
estimators are therefore the same only when n = 1.

Most of the attention on bias-correction in previous MRI
literature has been focused on the Rician distribution (i.e.,
images generated via ŝMag or where n = 1). Henkelman
suggested that the unbiased signal could be estimated by
setting the expected-value function for the Rician distri-
bution equal to the measured magnitude and solving for
s (1,2). Using the notation E[z] to represent the expected
value of the random variable z, we can write this as

E[ŝMag] = ŝMag. [5]

In statistical terminology, this is the simplest form of the
method of moments. McGibney and Smith (4) and Miller
and Joseph (5) independently also used the method of
moments, but noted that the Rician’s second moment

E[(ŝMag)2] = s2 + 2σ2 = (ŝMag)2 [6]

permits a simpler method of moments estimator:

ŝMom2(�r, �θ) =
√

(ŝMag(�r, �θ))2 − 2σ2. [7]

This method has also previously been employed for the
same statistical problem as it arises in other disciplines
[e.g., (11,13,14)].

One complaint that has been leveled against ŝMom2 is
that it can produce imaginary-valued estimates for the real-
valued s (8). We have a different interpretation, suggested
by estimation of s2 in (11). We note that, as (ŝMag)2 − 2σ2 is
an unbiased estimator of s2, when s � 0 this equation must
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sometimes take negative values. However, as we know that
s2 must be positive, there is another estimator that is guar-
anteed to have equal or smaller error: max[0, (ŝMag)2 − 2σ],
although it will now be biased. Taking the square root then
gives us

{max[0, (ŝMag)2 − 2σ]}1/2 = Re{[(ŝMag)2 − 2σ2]1/2}. [8]

Thus, by simply taking the real part of ŝMom2 (likely what
the original authors intended), we are basing our result
on an improved estimator of s2 and producing a valid
estimator for s.

A related estimator has been suggested by Gudbjartsson
and Patz,

ŝGP(�r, �θ) =
√

|(ŝMag(�r, �θ))2 − σ2|, [9]

which is proposed to have a more gaussian-like distribu-
tion (6).

Sijbers et al. have considered several applications of the
maximum likelihood method for deriving estimators in the
context of MRI (8,9,26). Their conclusions, as relevant to
our problem, can be summarized as: when given a pair of
lists �r and �θ of quadrature MRI measurements from a single
voxel meeting our stated assumptions, we should take ŝMag
as the estimate of s (9). Additional previous work on this
problem has extended estimators to multiple channels (10),
but for simplicity we will leave the channel-combination
problem aside here.

In the “Theory” section, we consider the major methods
that statisticians have suggested for deriving information-
maximizing estimators (i.e., estimators that seek to get the
most information about the true MRI signal magnitude
based on the available measurements). Although maxi-
mizing the use of available information is theoretically
appealing, it is also possible, as suggested by Bernstein
et al. (3), that the signal-dependent, and thus spatially vary-
ing, bias is a significant perceptual issue in radiologists’
interpretation of MRI magnitude images. With this in mind,
we continue the “Theory” section by studying the prop-
erties of estimators that seek explicitly to reduce bias. As
part of this, we show that there is an unavoidable trade-off
between bias and variance when estimating the true MR
signal magnitude.

In the “Computing Estimator Metrics” section, we quan-
tify all the previous estimators’ performance relative to this
trade-off bound. In addition to quantifying mean squared
error and bias [some of which we previously computed
with a different method in (27)], we attempt to illumi-
nate the bias/variance trade-off between these estimators
via comparison with computed bounds on best-case bias
or variance (28). The results of these comparisons are pre-
sented in the “Results” section. In the “Discussion” section,
we summarize our conclusions generally and suggest mea-
sures other than bias that we believe are worth considering
when evaluating image estimators.

THEORY

Choice of Distribution

Our approach to the problem of estimating the magnitude
of the true MRI signal begins by selecting the distribution
which we will use as the basis for our estimators. We begin

by collapsing the probability distribution for our multiple
measurements (also called multiple excitations) into one
distribution. We do this using the concept of a sufficient
statistic. Informally, if we have a probability distribution
p(x, y ; P), with x, and y being measurements and P being
a parameter, the derived statistic f (x, y ) is sufficient for P
if knowing just f (x, y ) tells us as much about P as know-
ing both x, and y [for further discussion of sufficiency see
(29,30)].

For our problem, it is known that the optimal sufficient
statistic is the complex average of the measurements (30).
Thus, we define our sufficient statistics to be A = 1

n

∑n
i=1 ai ,

B = 1
n

∑n
j=1 bi , or equivalently R = √

A2 + B2 and Θ =
arg(A, B), where arg is the argument function (e.g., atan2 in
the C programming language) with range from −π to π. The
distribution of A and B is then also binormal, but with an
appropriately scaled standard deviation

p(A, B; s, φ)

= n
2πσ2 exp

(
−n[(A − s cos φ)2 + (B − s sin φ)2]

2σ2

)
,

[10]

or in polar coordinates

p(R, Θ; s, φ) = Rn
2πσ2 exp

(
−n[s2 + R2 − 2sR cos(Θ − φ)]

2σ2

)
.

[11]

If we define s′ = s
√

n
σ

, A′ = A
√

n
σ

, and B′ = B
√

n
σ

, we can
write

p(A′, B′; s′, φ)

= 1
2π

exp
(

− (A′ − s′ cos φ)2 + (B′ − s′ sin φ)2

2

)
, [12]

and with R′ = R
√

n
σ

we have

p(R′, Θ; s′, φ) = R′

2π
exp

(
− s′2 + R′2 − 2s′R′ cos(Θ − φ)

2

)
.

[13]

This equation makes clear that the quantities marked with
“′” do not depend on any of the fixed parameters and so
their estimation is the same regardless of the number of
measurements or the standard deviation of the noise. For
the remainder of this work we will operate on the stan-
dardized sufficient statistics A′, B′, R′, and Θ and their
standardized binormal distributions in terms of s′ and φ.
It is useful to note that ŝ′

Mag = R′. More concretely, the
remainder of this work will address the question of whether
ŝ′

Mag can be improved by selecting a different function
applied to complex-average of the measurements.

Information Maximizing Estimators

The majority of statistical prescriptions for deriving estima-
tors proceed from the idea that the measurements contain
information about the unknown parameters. Estimators are
then suggested that optimally use the available informa-
tion in the measurements to calculate an estimate of the
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desired parameters. However, there are several theories in
the statistics literature regarding how the informational
relationship between the measurements and the unknown
parameters should be turned into an estimator. We will
consider several approaches from the statistical theory and
derive the estimators that they consider optimal.

Maximum Likelihood Estimator

The basic mechanism of the maximum likelihood esti-
mator (MLE) is to view the distribution as a function of
the parameters with the measurements fixed (viewed this
way, a distribution is renamed a likelihood), and maximize
the resulting function. It is often the case that taking the
logarithm of the likelihood function makes taking deriva-
tives easier as having no effect on the location of maxima,
and so the maximum log-likelihood is often substituted. In
our problem, taking derivatives of the log-likelihood with
respect to s′ and φ and using the our sufficient statistics as
our input data gives

∂�(s′, φ; A′, B′)
∂s′ = A′ cos φ + B′ sin φ − s′ [14]

∂�(s′, φ; A′, B′)
∂φ

= s′(B′ cos φ − A′ sin φ), [15]

where �(s′, φ; A′, B′) = log p(A′, B′; s′, φ). Setting these equal
to zero gives the maximum likelihood (ML) estimator,
previously noted by Sijbers and den Dekker (9),

(ŝ′
ML, φ̂ML) = (

√
A′2 + B′2, arg(B′/A′)) = (R′, Θ) [16]

As our model has two parameters, the maximum likeli-
hood estimator of our model is necessarily a pair of values.
If we wish to take just the portion representing the estimate
of s′ alone, then we refer to φ as a nuisance parameter. Sim-
ply dropping the nuisance parameter in this way gives an
estimator called the maximum profile likelihood estimate.
More formally, it is justified by replacing the likelihood
by the profile likelihood where φ̂ML is substituted for φ,
giving (29).

d�P(s′; A′, B′, φ̂ML)
ds′ =

√
A′2 + B′2 − s′ [17]

where we use �P to designate the log of the profile likelihood
and move φ̂ML to the list of known parameters as necessi-
tated by the profiling. Setting this equal to zero gives the
maximum profile likelihood estimate

ŝ′
P(R′) = R′ [18]

We can see from this that the maximum profile likelihood
estimate of the true signal magnitude is the same as ŝ′

Mag.

Information-Based Nuisance Parameter Removal

Although profiling to remove nuisance parameters from the
maximum likelihood estimator is a well-known practice, it
is essentially ad hoc and several correction factors have
been suggested by statisticians in attempts to improve the
performance, in particular the bias, of the resulting estima-
tors. We will briefly consider two famous examples of these
corrections.

Although we omit details of the derivation here, the
Bartlett-corrected profile likelihood is produced by intro-
ducing a correction factor ∆ to the derivative of the profile
likelihood function (31). We have previously shown (27)
that for our problem, the Bartlett correction is given by

∆ = − 1
2s′2 E

[
∂

∂s′
∂2

∂φ2 �(s′, φ; A′, B′)
]

= 1
2s′ . [19]

Applying this correction gives us the equation

d�P(s′; A′, B′)
ds′ − ∆ = R′ − s′ − 1

2s′ = 0, [20]

whose solution defines the Bartlett-corrected profile likeli-
hood estimator for our problem

ŝ′
Corr(R′) = R′ + √

R′2 − 2
2

. [21]

We note that this estimator can produce complex-valued
estimates of the real-valued s′ when R′ <

√
2. We also note

that this estimator is simply the average of ŝMag and ŝMom2,
and so we can use the same approach as with ŝMom2 to
force our estimates to be real-valued—in this case, the logic
implies that when R′ <

√
2, the estimator becomes ŝ′

Corr =
R′/2.

ŝ′
Corr also results from application of another famous

method of correction: the stably adjusted profile likelihood
estimator proposes multiplying the profile likelihood by a
factor M (s′) designed to approximate the likelihood func-
tion that would result if φ could be factored out of the
probability density function (29,32). It can be shown that,
for our problem, the estimator that results from maximiz-
ing the stably adjusted profile likelihood is identical to the
one produced via Bartlett correction and so we will refer
to the estimator in Eq. 21 simply as the maximum cor-
rected profile likelihood estimator for the remainder of this
article.

Maximum Marginal Likelihood Estimator

Noting that none of the previous estimators based on the
profile likelihood involve the phase of the sufficient statis-
tic Θ, it is tempting to discard the phase statistic Θ entirely
from the model (called marginalizing the distribution) in
Eq. 13 giving the Rician distribution

p(R′; s′) =
∫ π

−π

p(R′, Θ; s′, φ) dΘ

= R′ exp
(

− s′2 + R′2

2

)
I0(s′R′), [22]

This marginalized model is especially more convenient
for estimation as it also removes φ from the parameters; it
leaves us with a single statistic R′ and has a single param-
eter s′. Although it may be convenient, the critical issue is
whether basing estimators on this model is correct. It has
been a major point of debate in the statistics community
exactly when such a marginalization is actually “informa-
tion preserving,” and thus whether we should proceed to
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use this model [for a survey of this debate, see (33)]. For
the present, we leave aside arguments about when this
reduction is justified. The maximum marginal likelihood
estimator for our problem is the same as the maximum
likelihood estimator for the Rician distribution. As noted
above, this has been presented in several contexts (8,11,12).
We will denote this estimate as ŝ′

Marg. Unfortunately, the
estimator does not have a closed-form equation, but Sijbers
et al. showed that ŝ′

Marg = 0 is the unique solution when
R′2 ≤ 2 and there is a single positive solution that can be
found numerically when R′2 > 2, which allows us to cer-
tify that we have found the correct root using an efficient
numerical algorithm (8).

Bayesian Estimators

There is a separate school of thought in statistics that,
although also much-debated, provides a different set of
rules for generating estimators beyond the likelihood-based
ones. The Bayesian approach differs from likelihood-based
methods in that Bayesian estimation requires us to specify
our beliefs about values of the parameters before we see
any measurement data; these beliefs are called prior distri-
butions. In our problem, we would like to specify that the
true magnitude and phase are unrelated, and all phases are
equally likely to occur at any given point. Thus, we chose
the prior p(φ) = 1/(2π) and

p(s′) =
{

1 s′ ≥ 0
0 otherwise.

[23]

The prior p(s′) is clearly not a well-defined probability den-
sity function, as it does not integrate to unity. However, it is
common practice in Bayesian estimation to allow improper
priors for parameters so that we can express equivalent
probabilities of events over an infinite range, as in our
case where R′ is equally likely on the range (0, ∞). Using
these priors and Bayes’ Theorem, we can write the posterior
distribution

p(s′, φ; R′, Θ) = p(R′, Θ; s′, φ)
p(R′, Θ)2π

. [24]

If we desire to remove φ from the model, we can do this by
simply marginalizing the posterior to remove φ, thus

p(s′; R′, Θ) =
∫ π

−π

p(s′, φ; R′, Θ) dφ = p(R′; s′)
p(R′, Θ)2π

. [25]

where p(R′; s′) is the Rician distribution as in Eq. 22.
Having derived the posterior distribution for our param-

eter of interest, we must now decide how to summarize it
with a single estimate for s′. If we take the maximum of
the posterior distribution (commonly called the maximum
a posteriori or MAP estimate), we end up with the same
result as the maximum marginalized likelihood estimator;
formally, ŝ′

MAP = ŝ′
Marg.

As an alternative to the MAP, we could also consider the
mean value of the parameter s′ specified by this posterior.
This choice is attractive because it minimizes the expected

squared error of the estimate given this distribution and
data. We define this MB estimator as

ŝ′
MB =

∫ ∞

0
s′p(s′; R′, Θ) ds′

=
∫ ∞

0 s′p(R′; s′) ds′

p(R′, Θ)2π
[26]

Solving

p(R′, Θ) =
∫ ∞

0

∫ π

−π

p(R′, Θ; s′, φ) dφ ds′

= R′

2π

√
π

2
exp

(
−R′2

4

)
I0

(
R′2

4

)
, [27]

and ∫ ∞

0
s′p(R′; s′) ds′ = R′, [28]

we can substitute these back into our estimator equation
to get

ŝ′
MB(R′) =

√
2
π

exp
(

R′2
4

)
I0

(
R′2
4

) . [29]

Estimators Minimizing Bias

As an alternative to focusing on maximizing the use of
information in the measurements, it is often possible to
construct estimators that optimize a chosen error metric.
Given the focus in previous work on the detrimental effects
of signal-dependent estimator bias, it seems natural to ask
if we can construct an estimator of s′ whose bias does not
vary as s′ varies. Let us call this constant-biased estimator
ŝ′

CB. We will use bŝ′ to denote the bias of the estimator ŝ′.
Importantly, if we can produce a constant-bias estimator
(with bias bŝ′CB

everywhere), then we can produce an unbi-

ased estimator by taking ŝ′
CB−bŝ′CB

. Thus, statements about
the existence of a constant-bias estimator and an unbiased
estimator are equivalent.

In particular, we will focus on estimators that ignore the
phase of the sufficient statistic (i.e., radially symmetric esti-
mators of the form ŝ′(R′)) as all of the estimators derived
previously for our problem ignore the sufficient statistic’s
phase—refer to Eqs. 3, 7, 9, 18, 21, and 29. A lengthier anal-
ysis, which can be found in the Appendix, is required for
estimators of the form ŝ′(R′, Θ), but we will leave this aside
here as it is not necessary to understand the bias-variance
trade-off for the cited estimators.

In general, we can study the relationship between an
estimator’s bias and variance using the Cramér-Rao bound.
This a commonly used bound from statistics that links the
variance of an estimator with the gradient of its bias and
the second-derivative of the log-likelihood function, which
is also known as the Fisher information. As R′ is Rician-
distributed, we are interested in the Fisher information for
the Rician distribution, previously shown by Sijbers and
den Dekker to be (9)

I (s′) = Z(s′) − s′2, [30]
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where

Z(s′) ≡
∫ ∞

0
x3 I1(s′x)2

I0(s′x)
exp

(
− s′2 + x2

2

)
dx. [31]

We then note that if an estimator ŝ′(R′) has bias gradient
d

ds′ bŝ′ (s′) = dE[ŝ′]
ds′ (s′)−1, we can write the Cramér-Rao bound

for the estimator’s variance (28)

σ2
ŝ′ (s

′) ≥
(

1 + d
ds′ bŝ′ (s′)

)2

I (s′)−1. [32]

Studying Eq. 32, we can see that lims′→0+ I (s′)−1 = ∞,
which implies that, if d

ds′ bŝ′ (s′) = 0 for all s′ �= 0, we
cannot put an upper bound on lims′→0+ σ2

ŝ′ (s
′) in Eq. 32.

Thus, there is no estimator for our problem with constant
bias and bounded variance. This is a significant result as
it explains why none of the estimators we show above are
able to achieve an unbiased output: there is in fact no esti-
mator of this form that can do so as maintaining a useful
bound on variance.

Having shown the lack of a useful constant-bias estima-
tor, we might naturally ask how much signal-dependent
variation in the estimator’s bias we must accept in order to
bound the estimator’s variance at some chosen v . Consid-
ering [32], we can have d

ds′ bŝ′ = 0 as I (s′)−1 ≤ v . Then,

where I (s′)−1 > v , we must decrease d
d s′ bŝ′ proportion-

ally to compensate for the growth of I (s′)−1. As I (s′)−1 is
strictly decreasing with lims′→∞ I (s′)−1 = 1, we know that

for v > 1, I (s′)−1 = v coincides with one value of s′, which
we label s′

v . If v ≤ 1, we will define s′
v = 0. We also know

that the minimum absolute value of d
ds′ bŝ′ is attained for

s′ < s′
v by having equality in Eq. 32. Thus, we can write

d
ds′ bŝ′ =

{
0 s′ > s′

v√
v

I (s′)−1 − 1 s′ ≤ s′
v

. [33]

This equation indicates that, irrespective of the value of v
chosen, as s′ → 0+ we must have d

ds′ bŝ′ → −1. However,
it also indicates that changes to v affect the rate at which

d
ds′ bŝ′ → −1 as s′ → 0+; the effect is O(

√
v ). Thus, if we

want to halve the rate at which d
ds′ bŝ′ → −1 as s′ → 0+,

we must pay for this with a quadrupling of the bound on
variance v (a variation of this result is extended to all esti-
mators ŝ′(R′, Θ) in the Appendix). We will return to this
bound when we evaluate our estimators in the “Results”
section.

Visualization of Estimators

As these estimators are all functions from the real-valued
R′ to a real-valued estimate ŝ′, they are easy to visualize as
filters by plotting the response (ŝ′) as a function of the input
(R′). In Fig. 1, we have performed such a plot to facilitate
comparison of estimator behavior.

In Fig. 2, we show an illustrative example of the esti-
mators’ output given a synthetic input image corrupted
with complex gaussian noise. We note that some of the

FIG. 1. Responses of the esti-
mators. Each plot displays the
estimate of s′ produced by one
estimator. The x-axis is the mea-
sured value R′, and the y-axis is
the resulting estimate ŝ′.
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FIG. 2. Example of estimator output. Complex zero-mean gaussian noise with σ = 1 was added to the true image, and the resulting magnitude
data was used to produce estimated images from the estimators discussed above. The four target circles have integer amplitudes from 1
to 4. The images are scaled independently so that each covers the entire dynamic range available for display.

estimators (e.g., the moment-based and MAP estimators)
apply aggressive truncation at lower intensities of the mag-
nitude signal, enhancing contrast between the brightest
targets and the background, while simultaneously clipping
regions of the fainter targets to zero.

COMPUTING ESTIMATOR METRICS

Computation of Estimator Bias and Variance

To compare these estimators, both to each other and to the
bounds we outlined above, we computed the bias and vari-
ance of all the above estimators as a function of s′. The
equations for the bias and variance of the maximum profile
likelihood estimate are known (9,34):

bŝ′P (s′) =
√

π

2 1F1

(
−1

2
; 1; − s′2

2

)
− s′ [34]

σ2
ŝ′P

(s′) = 2 + s2 − π

2 1F1

(
−1

2
; 1; − s′2

2

)2

, [35]

where 1F1 is the confluent hypergeometric function of the
first kind.

For ŝ′
Mom2, we cannot find a closed form for the integral

in the bias equation, and so simply write

bŝ′Mom2
= A(s′) − s′, [36]

where we define A(s′) = ∫ ∞√
2

√
R′2 − 2R′ exp

(
− s′2+R′2

2

)
I0(s′R′) dR′. For the variance, we have

σ2
ŝ′Mom2

(s′) =
∫ ∞

√
2

R′3 exp
(

− s′2 + R′2

2

)
I0(s′R′) dR′

− 2Q(s′,
√

2) − A(s′)2, [37]

where Q(s′,
√

2) is Marcum’s Q-function (35). We solve
these 1D integrals via numerical integration in Mathemat-
ica (36). We take a similar approach for the following
estimators as well.

For the maximum corrected profile likelihood estimator,
we find that the bias is

bŝ′Corr
(s′) = bŝ′P (s′)/2 + bŝ′Mom2

(s′)/2, [38]

and the variance is given by

σ2
ŝ′Corr

(s′)

=
σ2

ŝ′P
(s′) + σ2

ŝ′Mom2
(s′) − 2(bŝ′P (s′) + s′)A(s′)

4

+ 1
2

∫ ∞
√

2
R′2√R′2 − 2 exp

(
− s′2 + R′2

2

)
I0(s′R′) dR′.

[39]
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The Gudbjartsson and Patz estimator has bias

bŝ′GP
(s′)

=
∫ 1

0

√
1 − R′2R′ exp

(
− s′2 + R′2

2

)
I0(s′R′) dR′

+
∫ ∞

1

√
R′2 − 1R′ exp

(
− s′2 + R′2

2

)
I0(s′R′) dR′ − s′,

[40]

and variance

σ2
ŝ′GP

(s′) = 2
∫ 1

0
(1 − R′2)R′ exp

(
− s′2 + R′2

2

)
I0(s′R′) dR′

+ s2 + 1 − [bŝ′GP
(s′) + s′]2 [41]

The MB estimator’s bias and variance are

bŝ′MB
(s′)

=
√

2
π

∫ ∞

0

R′

I0

(
R′2
4

) exp
(

−R′2 + 2s′2

4

)
I0(s′R′) dR′ − s′

[42]

σ2
ŝ′MB

(s′)

= 2
π

exp
(

− s′2

2

) ∫ ∞

0

R′I0(s′R′)[
I0

(
R′2
4

)]2 dR′ − [bŝ′MB
(s′) + s′]2.

[43]

Finally, we do not even have equations for the bias and
variance of the MAP estimator. Instead, we rely on Monte
Carlo estimates, using the sample mean and variance of the
result to approximate the estimator bias and variance. We
varied the underlying parameter s′ from 0 to 4 at intervals of
0.1 and, for each choice of parameter value, used 5 million
samples drawn from the distribution in Eq. 13.

Bias/Variance Trade-Off Analysis

The gap between the maximum profile likelihood estima-
tor’s bias gradient and variance and the computed bounds
for these give some evidence of how much improvement
to the estimator might be possible. In particular, a small
gap indicates that switching to a different estimator is not
likely an improvement, but instead representative of a dif-
ferent choice in the bias/variance trade-off. It is important
to note that as the bounds we have given are not necessar-
ily sharp, we should not draw the opposite conclusion—a
large gap may not actually indicate that a better esti-
mator is available, but simply that the bound is overly
generous.

For all of our estimators except the MAP, we can com-
pute the bias gradient from the bias equations given above.
Those that contain integrals without closed forms can then
also be solved numerically with satisfactory precision.

For the MAP estimator, we used the Monte Carlo method
suggested by Hero et al. to estimate the gradient (28)

∇bŝ′ (s′) � 1
L − 1

L∑
i=1


ŝ′(R′

i

) − 1
L

L∑
j=1

ŝ′(R′
j

)

×
(

R′
i
I1

(
R′

is
′)

I0
(
R′

is
′) + s′

)
− 1, [44]

where L is the number of samples (5 million in our case)
and R′

i is the ith input sample generated for the Monte Carlo
experiment.

RESULTS

To quantify the performance of these estimators, we plot
their bias and mean squared error in Figs. 3 and 4, respec-
tively. Considering these plots, we see that as the signal
increases, the estimators’ biases naturally tend toward zero.
Similarly, as the estimators become increasingly unbiased,
their mean squared error approaches the unbiased Cramér-
Rao bound of 1. Thus, for large s′, all of these estimators are
acceptable. The question, then, is if any of these estimators
are preferable in low-SNR images or regions of images.

We can combine these results with our description of the
bias/variance trade-off via the bounds we previously pre-
sented. In Fig. 5, we plot the difference between the true
bias gradient at each point, and the bound on bias gradient
implied by the true variance. This gap represents the most
improvement in bias we could expect from any estimator
with equivalent variance at a given value of s′. It is clear that
the difference between estimators is, almost everywhere,
larger than the gap between the observed bias and the
bound. This indicates that choosing between the estima-
tors is not simply a selection of the one with improved bias
performance, but instead selecting different points along
the bias/variance trade-off.

Similarly, in Fig. 6, we plot the difference between the
variance at each point and the bound on variance implied
by the true bias gradient. This allows us to visualize
whether we could reduce our images’ variance without
increasing the signal-dependence of our bias by selecting
any of these estimators. The smaller is this gap, the more
confident we can be that we are operating close to the opti-
mal variance implied by the observed bias gradient. It is
clear from the mean squared error plots that the observed
variance is far larger than the gap implied by the bound,
thus we should be convinced that the choices between
these estimators can be better described as selecting dif-
ferent bias/variance trade-offs, and not as a simultaneous
improvement in all the relevant metrics.

DISCUSSION

We have surveyed the existing estimators for the problem
of estimating the signal magnitude from the complex aver-
age of repeated measurements. We have made clear the
links between previous results and the existing methods
common in the statistical literature for these types of prob-
lems and have additionally introduced the MB estimator as
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FIG. 3. Biases of the estimators.
The x-axis is the true value s′; the
y-axis is the bias of the estimator
computed directly or via Monte
Carlo experiment.

FIG. 4. Mean squared errors
(MSEs) of the estimators. The x-
axis is the true value s′; the y-axis
is the MSE of the estimator com-
puted directly or via Monte Carlo
experiment.
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FIG. 5. Bounds on improvement
of the estimators’ bias gradients.
The x-axis is the true value s′;
the y-axis is a bound on possible
improvement of the bias gradient
given the observed variance.

FIG. 6. Bounds on improvement
of the estimators’ variances. The
x-axis is the true value s′; the
y-axis is a bound on possi-
ble improvement of the variance
given the observed bias gradient.
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yet another available estimator for this problem. We have
demonstrated the important fact that, as an essential feature
of this estimation problem, there is no unbiased estimator
available with bounded variance. Finally, we have shown
that there is an inevitable bias/variance trade-off that must
be made in choosing estimators.

Our analysis of the estimators under various error met-
rics illustrate the bias/variance trade-off suggested by the
theory we outlined above. Thus, of the available choices,
we end up with the result that ŝ′

Mag represents a valid
choice in the bias/variance trade-off. No other estimator,
previously published or derived here, allows us to consis-
tently improve both the bias and the variance across all
values of s′, and so there is no obvious “free lunch” to be
had by choosing a different estimator for image generation.
Improvements beyond the trade-off must come, instead,
from prior knowledge of the parameters (e.g., assuming
local smoothness).

Having proved that there is no unbiased estimator
with bounded variance available, and acknowledging an
inevitable trade-off between bias and variance in any of the
available estimators, we are left with the question of what
trade-off should be preferred in practice. It is possible that
a human observer might prefer the trade-off imposed by
one of these estimators more than others for the distribu-
tion of s′ commonly found in a clinical MRI. The answer to
this question is likely complicated and task-dependent; we
suggest that the literature on image perception provides a
useful suite of methods for evaluating these estimators in
the context of human observation (37–40). For quantitative
analysis of MRI, we suggest that the methods outlined in
this article be used to develop a range of estimators for the
quantity of interest. The relative trade-off between bias and
variance can then be determined for this new suite of esti-
mators and a choice made based on the application domain.
Additionally, care is required when performing quantita-
tive analysis based on “magnitude images,” as the estimator
used to generate these images can have a substantial effect
on downstream analysis due to changes in the intensity
distributions of the image voxels. Attempts to post-process
images using estimators of the sort described here will nor-
mally require access to raw k-space measurement data,
even for systems receiving with a single channel.

APPENDIX: EXTENSION OF THE CRAMÉR-RAO BOUND

We will now give an extension to the bound in [32] so that
similar results exist for estimators taking the full (R′, Θ) as
arguments. In particular, we will show

(
1

2π

∫ 2π

0
σŝ′ (s′, φ) dφ

)2

≥
(

1
2π

∫ 2π

0
d

ds′ bŝ′ (s′, φ) dφ + 1
)2

I (s′)
,

[A1]

where σŝ′ (s′, φ) is the standard deviation and bŝ′ (s′, φ) the
bias of an estimator ŝ′(R′, Θ). This inequality shows that, for
any choice of s′, if we replace the standard deviation and
bias gradient from Eq. 32 with the means of each taken over
φ, then the previous bound holds for all estimators ŝ′(R′, Θ).
As a result of this, the trade-off rate shown in Eq. 33 also
holds for the means. This implies that an estimator can
outperform the bound for certain choices of φ, but must pay

for this by underperforming at other φ so that it arrives at the
bounded average result. When the estimator’s performance
does not vary with φ at all, we recover the bound in Eq. 32.

For example, an estimator ŝ′(R′, Θ) = R′ cos(Θ) (i.e.,
the real component) is unbiased with bounded variance
when φ = 0, assuming negative estimates of magnitude
are retained, but it substantially underperforms the bound
when φ = π/2. Practically, this is observed as intensity
banding and drop-outs when an image is made using only
the real component. The important result of this bound
is that, as s′ and φ are unknown and vary across the
image volume, we cannot make an image that is unbiased
for all voxels simultaneously without relying on methods
which employ prior knowledge of s′ or φ (e.g., via spatial
smoothing).

We begin our proof of the bound with the Cauchy-
Schwartz inequality, and simplify by noting that

E
[

d
ds′ ln p(R′; s′)

]
= 0,

σŝ′ (s′, φ) ≥
E

[
ŝ′(R′, Θ) d

ds′ ln p(R′; s′)
]

√
I (s′)

≥ −σŝ′ (s′, φ), [A2]

where I (s′) is the Fisher information of the Rician distribu-
tion, shown in Eq. 30. Taking the mean over the range of φ

gives

1
2π

∫ 2π

0
σŝ′ (s′, φ) dφ ≥

1
2π

∫ 2π

0 E
[
ŝ′(R′, Θ) d

ds′ ln p(R′; s′)
]

dφ√
I (s′)

≥ − 1
2π

∫ 2π

0
σŝ′ (s′, φ) dφ. [A3]

Next, we simplify the middle of the inequality by noting
that

1
2π

∫ 2π

0

d
ds′ bŝ′ (s′, φ) dφ + 1

= 1
2π

d
ds′

∫ 2π

0
E[ŝ′(R′, Θ)] dφ

= 1
2π

d
ds′

∫ ∞

0

∫ 2π

0

(∫ 2π

0
p(R′, Θ; s′, φ) dφ

)

× ŝ′(R′, Θ) dΘ dR′. [A4]

Then, using the identity
∫ 2π

0 p(R′, Θ; s, φ) dφ = p(R′; s′) and
simplifying via the chain rule we get

1
2π

∫ 2π

0

d
ds′ bŝ′ (s′, φ) dφ + 1

= 1
2π

∫ 2π

0
E

[
ŝ′(R′, Θ)

d
ds′ ln p(R′; s′)

]
dφ. [A5]

Substituting this back into [A3], we arrive at our final bound
[A1] by squaring both sides.
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