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Abstract. The maturity of registration methods, in combination with
the increasing processing power of computers, has made multi-atlas seg-
mentation methods practical. The problem of merging the deformed label
maps from the atlases is known as label fusion. Even though label fusion
has been well studied for intramodality scenarios, it remains relatively
unexplored when the nature of the target data is multimodal or when its
modality is different from that of the atlases. In this paper, we review the
literature on label fusion methods and also present an extension of our
previously published algorithm to the general case in which the target
data are multimodal. The method is based on a generative model that
exploits the consistency of voxel intensities within the target scan based
on the current estimate of the segmentation. Using brain MRI scans ac-
quired with a multiecho FLASH sequence, we compare the method with
majority voting, statistical-atlas-based segmentation, the popular pack-
age FreeSurfer and an adaptive local multi-atlas segmentation method.
The results show that our approach produces highly accurate segmenta-
tions (Dice 86.3% across 22 brain structures of interest), outperforming
the competing methods.

1 Introduction

Registration-based segmentation [1] is popular in brain image analysis because
the relatively low variability of this organ (compared to the mediastinal or ab-
dominal regions) allows for accurate registrations and therefore good segmenta-
tion results. The principle of registration-based segmentation is straightforward:
assuming that an image with manually labeled structures (henceforth an “atlas”)
is available, this image can be spatially mapped or deformed (i.e., “registered”)
to a different target image. The registration outputs a deformation field that can
be used to warp (“propagate”) the atlas labels in order to obtain an estimate of
the labeling (“segmentation”) of the target image.

Registering and propagating the labels from a single atlas achieves limited
accuracy because a single example cannot sufficiently represent the whole popu-
lation of potential test data. This is a particularly limiting factor when pathology
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might be present in the images. A possible way of overcoming this limitation is
using a statistical atlas, which models the intensity and/or label distribution in a
population from a collection of atlases. For example, instead of a discrete label at
each voxel, a statistical atlas has a vector of label probabilities representing the
prior probability of observing a segmentation label at that location. Statistical
atlases have two major advantages over using a single template: 1. the image is
a summary of the population that was used to build the atlas and therefore it is
more likely that a given target image can be successfully registered to it; and 2.
the fact that the labels are probabilistic rather than deterministic can overcome,
to some extent, inaccuracies in the registration.

Building a statistical atlas from a set of labeled images is computationally ex-
pensive: it is typically an iterative process which requires registering the images
to the current estimate of the atlas, updating this estimate by averaging the
warped images, registering the images again, and so on [2]. However, once the
statistical atlas has been built, only one registration is required to propagate the
label probabilities from the atlas to a target image. These propagated probabili-
ties are usually interpreted as a Bayesian prior that, combined with a likelihood
term (computed from the image intensities), provides posterior probabilities for
the possible labels at each voxel location [3,4,5].

Even though probabilistic atlases have been successfully applied in brain MRI
segmentation, they still have difficulties representing larger anatomical varia-
tions. A computationally taxing, though effective way of handling such cases is
registering each available atlas to the target image independently. Even though
this multiplies the registration time by the number of atlases N , one would hope
that, if enough training data is available, at least one or two atlases will be
registered successfully to the test image. The question is then how to automat-
ically decide from which atlases the labels should be picked to render the final
segmentation. We call this problem label fusion.

1.1 Label Fusion

The popularity of label fusion algorithms is rising mainly for two reasons. First,
the maturity of registration algorithms allows them to produce excellent results.
The second reason is that the increasing processing power of computers alleviates
the high computational demand associated with this technique. Label fusion
techniques are based on weighting the contributions of the atlases depending
on their similarity to the target image after registration. There are two major
families of label fusion techniques: those that allow the weights to change across
spatial locations and whose that do not.

In global weighting methods, the weight of the contribution of each atlas to
the segmentation is the same for every voxel of the target image. In “majority
voting” [6], all atlas are weighted equally, independently of their similarity to the
target image after registration. Therefore, the most frequent propagated label is
selected at each voxel. The main limitation of this method is that, since atlases
are equally weighted, underrepresented features in the training data are often
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outweighted by the more frequent variations. In “best atlas selection” [7], the
labels are propagated only from the atlas which is most similar to the test image
after warping. This represents a considerable waste of CPU time dedicated to
registering atlases, whose labels are never used. SIMPLE (Langerak et al. [8])
computes a joint segmentation using majority voting, estimates the performance
of the individual atlases given the current segmentation, defines weights based
on the performances and finally uses these weights to update the estimated
segmentation. The performances of the atlases and the fused segmentation are
iteratively updated until convergence. In [9], global weights are defined based
on the normalized mutual information (MI) of each atlas and the target image
after registration.

Locally-weighted label fusion techniques achieve higher segmentation accu-
racy [10] by exploiting the fact that different atlases might have been correctly
registered in different parts of the target image. Therefore, it makes sense to bor-
row labels from different atlases at different locations. STAPLE [11] weights the
propagated labels according to an estimated accuracy level, while incorporating
consistency constraints. However, it is limited by the fact that it does not con-
sider the intensities of the target image in the segmentation. An ad-hoc fusion
method is proposed by Isgum et al. in [12]. They compute the local weight of
each atlas at each voxel as the inverse of the absolute intensity difference of the
target and registered images. The weighting maps are convolved with a Gaussian
kernel to ensure the smoothness of the output. A more principled version of this
method is proposed by Sabuncu et al. in [13]. They define a generative model
in which a discrete membership field specifies the index of the atlas from which
the intensity and label where borrowed at each voxel. Variational expectation
maximization is used to infer the most likely labels in this framework. The fusion
weights are given by the posterior distribution of the membership field in light
of the observed data.

Furthermore, local label fusion has been extended to a nonlocal framework
by Coupé et al. in [14]. They compare the local appearance of the target volume
with patches of the atlases centered not only at the voxel at hand but also at
shifted locations, and use the resulting similarity metrics to weight the label
corresponding to each patch. Because they explore the neighborhood of each
voxel, they do not need the registration to be precise, hence a linear transform
(which can be quickly optimized) rather than a deformable registration method
can be used. Other recent works on label fusion have explored ways of improving
the segmentation based on exploiting the correlations of the errors from the
different atlases to enhance the fusion [15], using advanced similarity metrics
derived from manifold learning for the weighting [16] and developing hierarchical
schemes for the fusion depending on the local label confidence [17].

1.2 Label Fusion in Intermodal and in Multimodal Setups

There are certain scenarios, where we cannot assume consistency between the
intensity values of the atlases and the target image. This is particularly a problem
in MRI, in which the intensities depend heavily on the selected pulse sequence,
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imaging hardware and acquisition parameters. Even though histogram matching
and intensity standardization techniques (such as [18]) can alleviate this problem,
they are only applicable if the type of MRI contrast of the input images is the
same (e.g., T1-weighted).

The intermodality 1 registration literature has coped with the issue of intensity
variation mainly through metrics based on global MI. We will assume here that
the registration of the atlases to the target image has already been solved. In
case of multimodal target data, the registration can either use heuristics (e.g.,
using the average MI between the target and all the atlases) or estimate the
true multichannel MI via high-dimensional histograms [19] or entropic spanning
graphs [20].

Global label fusion approaches can be easily generalized to the inter / mul-
timodal case using MI to compute global “distances” between images. This is
the case for best template selection [7] and Cao et al.’s manifold learning ap-
proach [16]. For majority voting, SIMPLE and STAPLE, generalization is not
even needed because they do not rely on the intensities of the images, and they
are thus independent of the modalities or number of image channels of the data.

Local fusion approaches, which are the most appealing ones due to their excel-
lent performance, are however harder to extend to inter- and multimodal scenar-
ios: techniques that rely on computing local similarities by directly comparing
image intensities (e.g., Isgum et al. [12]) cannot be used. In the multimodal case,
if one of the channels matches the modality of the atlas, it would be possible to
discard the rest of the channels and use a intramodal algorithm. However, this
strategy is suboptimal in the sense that it does not consider data that might
convey important information.

Another option would be to use MI or normalized cross correlation (NCC)
to define local weights. However, both MI and NCC require a number of im-
age samples for estimation, which represents a compromise between localization
and metric reliability if it is to be computed at a certain voxel using the lo-
cal neighborhood. Moreover, neither MI nor NCC decay very fast with poorly
aligned images. Therefore, one typically needs to define a function that maps
them to weights, enhancing the differences in metric values (e.g. w = [NCC]α,
with α > 1). Despite these disadvantages, this type of heuristics could be used
to generalize the methods by Isgum et al., Coupé et al. [14] and Wang et al. [15]
to intermodal and multimodal settings. Sabuncu et al.’s method [13], which pro-
duces excellent results in an intramodality brain MRI segmentation problem,
relies on a principled generative model in which the intensity of the target image
at a voxel location is assumed to be equal to the intensity of one of the deformed
atlases at the same location plus Gaussian noise. This generative model was
modified to accommodate the intermodality case in [21].

1 Throughout the rest of this paper, we use “intermodality” to refer to the situation
in which the atlases and the target image are from different modalities (or have
different types of MRI contrast), and “multimodality” for the situation in which
more than one image channel is available for the target image.
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1.3 Contribution of This Paper

To the best of our knowledge, no prior work has been carried out that deals
with how to carry out label fusion on multimodal data. In a previous conference
paper [21], we presented a generative model for multi-atlas image segmentation
across modalities. Rather than directly comparing the intensities of the regis-
tered atlases and the target image, we proposed exploiting the consistency of
voxel intensities within the segmentation regions, as well as their relation with
the propagated labels. Here we extend this framework to the multimodal case
as well as present some improvements in the inference algorithm that yield im-
proved segmentation results. In particular, we use expectation maximization
(EM) rather than k-means to compute the estimates of the image intensity pa-
rameters.

The rest of the paper is organized as follows. Section 2.1 describes the gener-
alization of the framework to multimodal data, as well as the improved inference
algorithm based on EM. Section 3 presents the experimental setup, in which we
use the proposed method and a number of competing algorithms (majority vot-
ing, FreeSurfer [22], statistical-atlas-based segmentation and a NCC-adaption of
Isgum et al.’s algorithm) to segment brain MRI data from a multiecho FLASH
sequence. Finally, Section 4 discusses the results and future directions of work
and concludes the paper.

2 Methods

The proposed method relies on a generative model of image data. We first de-
scribe the model and then propose a method to carry out inference in order to
obtain the segmentation corresponding to a target image.

2.1 Generative Model

The generative model displayed in Figure 1 (see corresponding equations in
Table 1) was used in this study:

1. We assume that a set of N atlases (each with L different labels) has been
registered to a common space (which is the space of the target scan). We
name the propagated label maps {Ln} = L1, . . . , LN . Rather than using the
discrete propagated labels directly in the fusion, we assume that each voxel
in the (deformed) atlases has an associated vector of label probabilities which
is built through a logOdds model [23] with slope ρ. This model is described
by Equation 1 in Table 1, where Dl

n is the signed distance transform corre-
sponding to label l in atlas n; it is greater than zero inside the object, zero
on the boundary, and less than zero outside. The logOdds model essentially
replaces the discrete labels by smoother probability maps which can, to some
extent, compensate for inaccuracies in the registration (in a similar way as
statistical atlases).



120 J.E. Iglesias, M.R. Sabuncu, and K. Van Leemput

Table 1. Equations corresponding to the graphical model in Figure 1(a)

1. p(L(x) = l|Ln) = exp
[
ρDl

n(x)
]
/
∑L

l′=1 exp
[
ρDl′

n (x)
]

2. M ∼ 1
Zβ

∏
x∈Ω exp

(
β
∑

y∈N (x) δ(M(x) =M(y))
)

3. L(x) ∼ p(L(x) = l|LM(x))

4. I∗(x) ∼ (2π)−
C
2

∣
∣ΣL(x)

∣
∣− 1

2 exp
[
− 1

2
(I∗(x)− µL(x))

TΣ−1
L(x)(I

∗(x)− µL(x))
]

5. I(x) = B(x)I∗(x), with B(x) =diag(exp
[−∑

k bkψk(x)
]
)

2. A discrete field of memberships M such that M(x) ∈ {1, . . . , N} is sampled
from a Markov random field (MRF) parametrized by the smoothness con-
stant β (Equation 2 in the table, where N (x) represents the 6-neighborhood
of x). Higher values of β encourage larger clusters of voxels with the same la-
bel. The field M(x) indicates from which atlas the generated image borrows
the information at each voxel location x in the image domain Ω.

3. From {Ln} and M , the “real”, underlying segmentation of the data L(x) is
generated by sampling at each voxel location x from the probability vector
specified by atlas LM(x) at x (Equation 3 in the table).

4. Given the label of a voxel L(x), the “real”, underlying image intensity I∗(x)
is sampled from a multivariate Gaussian distribution associated with that
label (Equation 4 in Table 1). Each of the L Gaussians is described by a C×1
mean vector µl and a C × C covariance matrix Σl (where C is the number
of image channels). We assume a flat prior for the Gaussian parameters i.e.,
p(µl) ∝ 1, p(Σl) ∝ 1.

5. I∗(x) is corrupted by a multiplicative bias field B(x), which is modeled
through a set of low-spatial-frequency basis functions {ψk(x)} to yield the
final observed intensities I(x) (Equation 5 in the table, where the exponen-
tial ensures that the field is non-negative). The bias field is described by the
vectors of coefficients {bk}, where bk = [bk,1, . . . , bk,C ]

T groups the C coeffi-
cients (one per channel) for basis function ψk. Note that we allow a different
set of coefficients per image channel, i.e. we assume that the bias fields for
the different channels are independent. As for the parameters of the Gaus-
sian distributions, we also assume a flat prior for the bias field coefficients:
p({bk}) ∝ 1. Henceforth, we use the variable Θ to refer to the whole set of
intensity parameters i.e., Θ = {{bk}, {µl}, {Σl}} and p(Θ) ∝ 1.

It is worth to note that some segmentation methods are particular cases of this
generative model. For example, by setting β = 0, ρ → ∞, Σl = limα→∞ αId
(where Id is the identity matrix) we obtain majority voting. Setting β → ∞
and ρ → ∞ amounts to best atlas selection. Finally, making β = 0 gives a
model which is very similar to statistical-atlas-based segmentation [3]. The main
difference is that, instead of registering a pre-built statistical atlas (a parametric
model), we have a nonparametric approach in which an atlas is constructed
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Fig. 1. a) Graphical model of the image generation process. Random variables are in
circles and constants are in boxes. Observed variables are shaded. Plates indicate repli-
cation. b) Illustration of the generative process: three deformed atlases are combined
through the membership fieldM(x) to yield the labels L(x). The image intensities I(x)
are obtained by sampling a Gaussian distribution for each label. We purposely chose
the Gaussian parameters to make I(x) resemble a T1-weighted MRI scan.

directly in target image space by registering all the atlases to the dataset to
segment.

2.2 Segmentation Using Bayesian Inference

We can use Bayesian inference to compute the most likely segmentation by
maximizing the posterior probability of the labels L(x) given the available in-
formation, i.e., the image intensities I(x) and the deformed atlases {Ln}:

̂L = argmax
L

p(L|I, {Ln}) = argmax
L

∫

Θ

p(L,Θ|I, {Ln})dΘ

= argmax
L

∫

Θ

p(L|Θ, I, {Ln})p(Θ|I, {Ln})dΘ (1)

In our previous conference paper, we attempted to maximize p(L,Θ|I, {Ln})
with respect to {L,Θ}, which was achieved with a coordinate ascent algorithm,
i.e., alternatively optimizing for L and Θ. This is a k-means style algorithm.
However, when we compute the most likely Θ, we are not interested in the
labels L, hence a better strategy would be to integrate out L. This leads to the
EM algorithm proposed in this paper, in which soft label assignments (rather
than hard, like in k-means) are used to update Θ.

Looking at Equation 1, we see that it involves a high-dimensional integral
over the parameters in Θ. However, we can make the assumption that the sta-
tistical distribution of these parameters given the observed data I and {Ln}
is sharp, i.e., p(Θ|I, {Ln}) ≈ δ(Θ − ̂Θ), where δ(·) is Kronecker’s delta and
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̂Θ = argmaxΘ p(Θ|I, {Ln}). This assumption can be quite realistic, since we do

not expect the values of Θ to deviate much from ̂Θ without considerably de-
creasing the likelihood of the model. Then, the integral disappears and the most
likely labels are (approximately) given by:

̂L ≈ argmax
L

p(L| ̂Θ, I, {Ln}) (2)

We will first discuss how to obtain the optimal estimate of ̂Θ. Then, we will
describe a method to compute the most likely segmentation with Equation 2.

Computing the Most Likely Image Intensity Parameters: The optimal
point estimate of the image intensity parameters Θ is given by:

̂Θ = argmin
Θ

(− log p(I|Θ, {Ln})) (3)

= argmin
Θ

(

− log

[

∑

L

∑

M

p(I, L,M |Θ, {Ln})
])

(4)

where we have used p(Θ) ∝ 1. Equation 4 is computationally intractable due to
the sum over all possible membership fields

∑

M , which does not factorize over
voxels. Instead, we use variational EM (VEM) to minimize an upper bound. We
define the free energy J as:

J = − log p(I|Θ, {Ln}) +KL[q(M)||p(M |I, Θ, {Ln})] (5)

= −H(q)−
∑

M

q(M) log p(I,M |Θ, {Ln}) (6)

where H(·) is Shannon’s entropy, KL(·||·) is the Kullback-Leibler divergence
and q(M) is a statistical distribution over M , which approximates the posterior
probability p(M |I, Θ, {Ln}). The free energy J is a bound of the target func-
tion to minimize (Equation 3) because the KL divergence is nonnegative. The
standard computational trick in VEM is to assume that q(M) factorizes:

q(M) =
∏

x∈Ω

qx(M(x)),

which eventually makes the intractable sum tractable. The idea is to minimize J
by iteratively optimizing for q(M) (expectation or E step) and Θ (maximization
or M step):

– E step: to optimize J for q(M), it is easier to work with Equation 5, since
the only term depending on q(M) is the KL divergence. We have
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q̂ = argmin
q

∑

M

q(M) log
q(M)

p(M |I, Θ, {Ln})

= argmin
q

∑

M

q(M) log
q(M)

p(M)
∑

L p(I|L,Θ)p(L|M, {Ln})

= argmin
q

⎛

⎝

∑

x∈Ω

N
∑

n=1

qx(n) log qx(n)− β
∑

x∈Ω

Eqx

⎡

⎣

∑

y∈N (x)

qy(M(x))

⎤

⎦ − . . .

. . .−
∑

x∈Ω

N
∑

n=1

qx(n) log

[ L
∑

l=1

p(I(x)|Θl)p(LM(x) = l)

])

Building the Lagrangian with a multiplier for the constraint
∑

n qx(n) = 1
and taking derivatives with respect to qx, we obtain:

qx(M(x)) =
exp

[
β
∑

y∈N (x) qy(M(x))
]∑L

l=1 p(I(x)|Θl)p(LM(x)(x) = l)

∑N
n=1

(
exp

[
β
∑

y∈N (x) qy(n)
]∑L

l′=1 p(I(x)|Θl′)p(Ln(x) = l′)
) ,

(7)

which can be solved with fixed point iterations. Note that the constraint
qx ≥ 0 is implicitly enforced due to the nonnegative nature of probabilities
and of the exponential function.

– M step: to optimize J with respect to Θ, we focus on Equation 6 instead
(since the entropy does not depend on Θ):

Θ̂ = argmax
Θ

f(Θ) = argmax
Θ

∑

x∈Ω

N∑

n=1

qx(n) log

( L∑

l=1

[p(I(x)|Θl)p(Ln(x) = l)]

)

.

(8)

Here, one must be careful with the scaling of the Gaussian probability density
function:

p(I(x)|Θl) = exp

[

C
∑

c=1

∑

k

bk,cψk(x)

]

G(I∗(x);µl,Σl)

where G is the probability density function of the multivariate Gaussian
distribution. Taking matrix derivatives of Equation 8 with respect to µl and
Σl (see [24]), we obtain the following update equations:

µl ←
∑

x∈Ω wl(x)I
∗(x)

∑

x∈Ω wl(x)
, Σl ←

∑

x∈Ω wl(x)(I
∗(x)− µl)(I

∗(x) − µl)
T

∑

x∈Ω wl(x)
(9)
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where

wl(x) =

N
∑

n=1

qx(n)
p(I(x)|Θl)p(Ln(x) = l)

∑L
l′=1 p(I(x)|Θl′ )p(Ln(x) = l′)

For the bias field parameters {bk}, the derivatives of the target function in
Equation 8 are:

∂f

∂bk
=

∑

x∈Ω

ψk(x)

N∑

n=1

∑L
l=1 p(I(x)|Θl)p(Lm(x) = l)

[
Id −Σ−1

l (I∗(x)− µl)I
∗T(x)

]

∑L
l′=1 p(I(x)|Θl′)p(Lm(x) = l′)

(10)

and we use a quasi-Newton algorithm with line search (BFGS [25]) to numeri-
cally find the optimum. Because the bias field has a low number of degrees of
freedom, the first iteration of the VEM algorithm already produces a relatively
good estimate of the coefficients. Therefore, the BFGS algorithm converges very
quickly (one or two steps) in successive iterations.

Computing the Final Segmentation: Once we have the estimate ̂Θ, com-
puting the most likely segmentation in Equation 2 is straightforward. Replacing
the posterior probability of M by its approximation q(M) in Equation 2, we
have:

̂L ≈ argmax
L

p(L|I, ̂Θ, {Ln}) ≈
∑

M

p(L|M, I, ̂Θ, {Ln})q(M)

=
∏

x∈Ω

N
∑

n=1

qx(n)
p(I(x)| ̂ΘL(x))p(Ln(x) = L(x))
∑L

l′=1 p(I(x)| ̂Θl′ )p(Ln(x) = l′)

Since this expression factorizes over voxels, the most likely label at location x is
just:

̂L(x) = argmax
l

N
∑

n=1

qx(n)
p(I(x)| ̂Θ)p(Ln(x) = l)

∑L
l′=1 p(I(x)| ̂Θl′ )p(Ln(x) = l′)

(11)

The complete segmentation algorithm is summarized in Table 2.

3 Experiments and Results

3.1 Datasets

We used two different datasets in this study, one for training and one for testing.
The training dataset (i.e., the atlases) consists of 39 T1-weighted scans acquired
with a MP-RAGE sequence in a 1.5T scanner with the following parameters:
TR=9.7ms, TE=4.ms, TI=20ms, flip angle = 10◦, 1 mm. isotropic resolution.
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Table 2. Summary of the proposed multimodal label fusion framework

I. Compute the most likely image intensity parameters:
0. Initialize qx(n) = 1/N , Σl = limα→∞ αId (equivalent to majority voting).
1. Update q with Equation 7 until convergence.
2. Update means and variances with Equation 9.
3. Update the bias field using the derivatives in Equation 10.
4. Go to 1 until convergence.

II. Compute the most likely segmentation for each voxel using Equation 11 and
the latest estimate of q from step I.1.

Thirty-six brain structures were manually delineated by expert human raters us-
ing the protocol described in [26]. We note that these are the same subjects that
were used to construct the probabilistic atlas in FreeSurfer [22]. As in [21,13],
rather than using all 36 structures in the evaluation, we consider a representa-
tive subset here: left and right white matter (WM), cerebral cortex (CT), lateral
ventricle (VE), cerebellum white matter (CWM), cerebellum cortex (CCT), tha-
lamus (TH), caudate (CA), putamen (PU), pallidum (PA), hippocampus (HP)
and amygdala (AM).

The test dataset [27] consists of eight multimodal brain MRI scans acquired
with a multiecho FLASH sequence in a 1.5T scanner with the following parame-
ters: TR=20ms, TE = minimum, flip angle = {3◦, 5◦, 20◦, 30◦}, 1 mm. isotropic
resolution. There are therefore C = 4 channels available, one per value of flip
angle. The lowest flip angles produce PD-weighted images, whereas the higher
angles yield T1-weighted data. The same set of 36 structures was labeled us-
ing the same protocol. These manual annotations were drawn on the images
corresponding to the largest flip angles, i.e., T1-weighted scans.

3.2 Preprocessing

All the scans from both datasets were first skull-stripped using ROBEX [28].
For the test dataset, we only used the T1-weighted volume as input to the skull
stripping module. The training images were then deformed to the test images
using a nonlinear, symmetric, diffeomorphic registration method (ANTS [29],
version 1.9). For the registration metric, we used the mean mutual information
(computed with 32 bins) between the four fixed images (i.e., the four flip angles)
and the moving image. The executed command was:

ANTS 3 -m MI[fix1,mov1,0.25,32] ... -m MI[fix4,mov4,0.25,32]

-r Gauss[3,0] -t SyN[0.25] -i 11x51x51x15 -o output

The resulting warps were used to deform the distance transforms of the different
labels and atlases Dl

n, which are in turn used to compute label probabilities for
each voxel of the target image to segment with Equation 1 in Table 1.

In addition to registering the atlases to the target images (used in label fu-
sion), we built a single probabilistic atlas via an iterative, unbiased approach [2]



126 J.E. Iglesias, M.R. Sabuncu, and K. Van Leemput

as described as follows. First, we used the FreeSurfer pipeline to obtain intensity-
standardized images. The atlases were then spatially normalized by registering
with a population template image (which was the average intensity image com-
puted based on the latest registrations). Since the images were intensity normal-
ized, we used cross correlation as the registration similarity metric. Hence, this
time the command was:

ANTS 3 -m CC[fix,mov,1,5] -r Gauss[3,0] -t SyN[0.25]

-i 11x51x51x15 -o output

After a round of registration (where all atlases were registered with the current
template), the template was updated as the average intensity image. Then, the
atlases were re-registered to the template and this whole cycle was iterated until
the intensity template converged. The final warps were then used to deform the
corresponding manual annotations and compute label probabilities for each voxel
in the statistical atlas as:

p(L(x) = l) = (1/N)

N
∑

n=1

δ(Ln(x) = l). (12)

The obtained template was registered to the test images using the mean mutual
information metric, as described above. The resulting deformations were used to
propagate the label probabilities of Equation 12 to the target image space.

3.3 Experimental Setup

We used the N = 39 atlases to segment the eight multimodal volumes using a
number of competing approaches:

– Majority voting. Rather than using discrete labels (i.e., ρ =∞ in the logOdds
model), we use ρ = 1, which is shown in [13] to constitute a better prior by
introducing some “fuzziness”, which can partially compensate for inaccurate
registration. The performance of majority voting marks the accuracy that
can be reached with registration only.

– The statistical atlas, which was constructed by co-registering the atlases as
described in Section 3.2. The algorithm to obtain the segmentation given the
(registered) statistical atlas is very similar to our method in Section 2.2. We
actually used the same implementation assuming a single atlas for which the
label probabilities are not given by the logOdds model, but by Equation 12
instead. The basis for the bias field model {ψl(x)} was set to a third-degree
polynomial, which, in 3D, yields 20 coefficients per image channel. Rather
than iterating through all voxels in the estimation of the bias field (Equa-
tions 8 and 10), we only used a randomly selected subset (10% of the total
number of voxels |Ω|) to speed up the algorithm. The estimate will still be
reliable thanks to the low number of degrees of freedom of the field.
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– An ad-hoc locally-weighted label fusion method. To estimate the local sim-
ilarity, we computed the 10th power of the NCC of the two images in a
7 × 7 × 7 voxel window around the location of interest. We also considered
using MI instead of NCC, but NCC performed better in pilot experiments
and also has the advantage that it can efficiently be computed using inte-
gral images [30]. Since four channels are available for the target image to
analyze, we simply took the average NCC of the four. The coefficient of the
exponential (10) was coarsely tuned based on visual inspection of the results
on a T1-weighted MRI scan of the first author’s brain, preprocessed in the
same way as the test data.

– The proposed framework. We used ρ = 1.0, β = 0.75, which we borrowed
from [13]. A third-order polynomial was again used for the bias field model-
ing, using 10% of the available image data for the estimation. The iterative
EM algorithm was stopped when no parameter in Θ changed more than
0.1% or when the maximal number of iterations (set to 25) was reached.

– Finally, it is also interesting to segment the data using only one of the
channels in order to estimate the benefit of using all four channels. As a
representative, state-of-the-art method, we used FreeSurfer to segment the
T1-weighted channel (i.e., flip angle = 30◦). Using FreeSurfer also has the
advantage that it was trained on the same training data used in this study,
enabling a fair comparison. Moreover, the fact that it uses the same set of
labels facilitates the comparison with the other methods.

In order to evaluate the accuracy of the aforementioned approaches, we used
the popular Dice coefficient (Dice = 2|A ∩M |/[|A| + |M |]), where A and M
denote the automatic and manual segmentations, respectively; and | · | denotes
the volume.

3.4 Results

Figures 2 and 3 display, for each hemisphere, the boxplots for the Dice overlaps
corresponding to the structures of interest listed in Section 3.1. The mean Dice
scores for each hemisphere are listed in Table 3. Table 4 displays p-values corre-
sponding to paired t-tests comparing the different competing methods with the
proposed algorithm. Finally, Figures 4 and 5 show sample segmentations from
the different methods.

FreeSurfer is the one of the best performers only in the cortex. For the other
structures, it is consistently inferior to the other methods, which take advantage
of the multimodal nature of the target images. It is important to mention that
the T1-weighted volume, which is the one we feed to the FreeSurfer pipeline, has
relatively poor white matter / gray matter contrast (see for instance Figure 4),
which explains the low Dice overlaps produced by this method compared with
previously reported results (e.g. [13]).

Majority voting, thanks to the good performance of the registration method
and the large number of atlases, outperforms FreeSurfer and also the method
based on a single statistical atlas. Even though the statistical atlas produces
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Table 3. Mean Dice scores (in %) across the 11 structures of interest for each method:
left hemisphere (top row), right hemisphere (middle), and both combined (bottom)

Method FreeSurfer Stat.atlas Maj.Vot. Ad-hoc NCC This study

Left hemisphere 82.4 84.4 85.4 85.6 86.4
Right hemisphere 83.2 84.1 85.1 85.4 86.1

Both 82.8 84.3 85.2 85.5 86.3

Table 4. p values corresponding to paired t-tests comparing the Dices scores from the
different methods with those from the proposed approach

Method FreeSurfer Stat.atlas Maj.Vot. Ad-hoc NCC

Left hemisphere 4.1 · 10−19 2.3 · 10−11 2.3 · 10−6 1.6 · 10−4

Right hemisphere 9.4 · 10−12 5.0 · 10−11 1.4 · 10−4 9.6 · 10−3

Both 7.9 · 10−29 5.0 · 10−21 1.9 · 10−9 8.9 · 10−6

better results for the cortices of the cerebrum and the cerebellum, which are very
difficult to register, it performs considerably worse in the subcortical structures.
In this case, the flexibility of having the 39 atlases registered independently
represents an advantage over the single registration of the statistical atlas.

When the locally-computed NCCs are used to assign different weights to the
atlases at each voxel, a small (Dice increment 0.3%) but significant (p < 10−5)
improvement is achieved. When we use the generative model proposed here,
we obtain as good results as the statistical atlas on the cortices, significantly
outperforming the other multi-atlas methods (majority voting and NCC-based).
Furthermore, the proposed method also provides slightly better results majority
voting and the NCC-based algorithm for the subcortical structures.

Sample segmentations are displayed in Figures 4 and 5. The segmentations are
in general poor in the cortex (red label), but quite accurate for the subcortical
structures. The arrows pinpoint the typical mistakes made by the other methods
as explained above. In Figure 4, FreeSurfer makes quite a few mistakes around
the lateral ventricle (in purple) and in the cerebellum. The statistical atlas, next
to mistakes in the ventricle, also displays a leak in the hippocampal label (yel-
low). Majority voting cannot capture the large ventricle, which is anatomically
infrequent. The ad-hoc locally-weighted model produces a poor segmentation for
the caudate nucleus (light blue). The proposed algorithm, on the other hand,
provides a robust segmentation across all structures.

In figure 5, FreeSurfer (next to oversegmenting the cortex) severely under-
segments the thalamus. The statistical atlas undersegments the left and right
pallidum (dark blue), whereas majority voting shows some problems with the
cortex. So does the ad-hoc NCC method, which also undersegments the right
caudate nucleus (oversegmenting the right lateral ventricle). Again, the pro-
posed algorithm produces the most accurate segmentation across the different
structures.
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Fig. 2. Boxplot of Dice overlap scores corresponding to the 11 structures of interest for
the left hemisphere; see Section 3.1 for the abbreviations. Horizontal box lines indicate
the three quartile values. Whiskers extend to the most extreme values within 1.5 times
the interquartile range from the ends of the box. Samples beyond those points (outliers)
are marked with crosses.
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Fig. 3. Boxplot of Dice overlap scores corresponding to the 11 structures of interest
for the right hemisphere; see caption of Figure 2

4 Discussion

In this paper we have presented a multimodal label fusion scheme that does
not make any assumptions about the relation between the intensities of the
deformed atlases and the target images. Instead, the framework uses a principled
generative model to take advantage of the consistency of intensities within image
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Fig. 4. Sagittal slice of a sample scan: input data (two of the four channels), ground
truth, outputs from the different algorithms, and bias fields estimated by our method
(blue=0.85, red=1.15). The arrows point to mistakes made by the different algorithms.

Fig. 5. Axial slice of a sample scan and its automated segmentations (see caption of
Figure 4)

regions. This is done by assuming that the intensities corresponding to each label
follow a multivariate Gaussian distribution. The results show that the presented
approach outperforms: 1. majority voting, which does not consider the intensities
of the target images; 2. FreeSurfer, a state-of-the-art segmentation tool that
only takes advantage of one of the channels of the target data; 3. using a single
statistical atlas (which takes advantage of all the channels); and 4. a heuristic
rule for locally weighted label fusion.
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The proposed method has the disadvantage that the Gaussian intensity dis-
tribution assumption might break down because of the nature of the data or if
two structures with different intensity profiles share the same label. For example
one might only be interested in one structure such as the hippocampus, in which
case a single Gaussian might not be an appropriate model for the background
intensities. One possible solution would be to use a mixture of Gaussians. In
this case, one must be careful because excessive flexibility in the intensity model
might lead to leaks in the segmentation.

Another disadvantage of the presented framework is that the parameters β
and ρ are fixed by the user. It would be desirable to allow the inference method to
handle them automatically, either by computing point estimates (as we did with
Θ here) or integrating them out. Exploring this direction, as well as incorporating
the registration into the framework (rather than considering it a preprocessing
step) remains as future work.
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14. Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.: Nonlocal
Patch-Based Label Fusion for Hippocampus Segmentation. In: Jiang, T., Navab,
N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363,
pp. 129–136. Springer, Heidelberg (2010)

15. Wang, H., Suh, J., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas seg-
mentation with joint label fusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence (in press, 2012)

16. Cao, Y., Yuan, Y., Li, X., Turkbey, B., Choyke, P., Yan, P.: Segmenting Images by
Combining Selected Atlases on Manifold. In: Fichtinger, G., Martel, A., Peters, T.
(eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 272–279. Springer, Heidelberg
(2011)

17. Zhang, D., Wu, G., Jia, H., Shen, D.: Confidence-Guided Sequential Label Fusion
for Multi-atlas Based Segmentation. In: Fichtinger, G., Martel, A., Peters, T. (eds.)
MICCAI 2011, Part III. LNCS, vol. 6893, pp. 643–650. Springer, Heidelberg (2011)

18. Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standard-
ization. IEEE Transactions on Medical Imaging 19(2), 143–150 (2000)

19. Staring, M., van der Heide, U., Klein, S., Viergever, M., Pluim, J.: Registration of
cervical MRI using multifeature mutual information. IEEE Transactions on Medi-
cal Imaging 28(9), 1412–1421 (2009)

20. Sabuncu, M., Ramadge, P.: Using spanning graphs for efficient image registration.
IEEE Transactions on Image Processing 17(5), 788–797 (2008)

21. Iglesias, J., Sabuncu, M., Van Leemput, K.: A generative model for multi-atlas
segmentation across modalities. In: IEEE ISBI, pp. 888–891 (2012)

22. FreeSurfer: http://surfer.nmr.mgh.harvard.edu

23. Pohl, K., Fisher, J., Shenton, M., McCarley, R., Grimson, W., Kikinis, R., Wells,
W.: Logarithm Odds Maps for Shape Representation. In: Larsen, R., Nielsen, M.,
Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 955–963. Springer, Heidel-
berg (2006)

24. Petersen, K., Pedersen, M.: The matrix cookbook (2008)

25. Nocedal, J., Wright, S.: Numerical optimization. Springer (1999)

26. Caviness Jr., V., Filipek, P., Kennedy, D.: Magnetic resonance technology in human
brain science: blueprint for a program based upon morphometry. Brain Dev. 11(1),
1–13 (1989)

27. Fischl, B., Salat, D., van der Kouwe, A., Makris, N., Ségonne, F., Quinn, B., Dale,
A.: Sequence-independent segmentation of magnetic resonance images. Neuroim-
age 23, S69–S84 (2004)

http://surfer.nmr.mgh.harvard.edu


A Generative Model for Probabilistic Label Fusion of Multimodal Data 133

28. Iglesias, J., Liu, C., Thompson, P., Tu, Z.: Robust brain extraction across datasets
and comparison with publicly available methods. IEEE Transactions on Medical
Imaging 30(99), 1617–1634 (2011)

29. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image
registration with cross-correlation: Evaluating automated labeling of elderly and
neurodegenerative brain. Medical image analysis 12(1), 26–41 (2008)

30. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: CVPR 2001 vol. 1, pp. 511–518


	A Generative Model for Probabilistic Label Fusion of Multimodal Data
	Introduction
	Label Fusion
	Label Fusion in Intermodal and in Multimodal Setups
	Contribution of This Paper

	Methods
	Generative Model
	Segmentation Using Bayesian Inference

	Experiments and Results
	Datasets
	Preprocessing
	Experimental Setup
	Results

	Discussion
	References




