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Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neu-
rodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudi-
nally acquired structural images and reliable image processing to evaluate disease modifying therapies.
Challenges have been related to the variability that is inherent in the available cross-sectional processing
tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this
paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-
subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily
many time points. We demonstrate that it is essential to treat all input images exactly the same as removing
only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability
and avoid over-regularization by initializing the processing in each time point with common information
from the subject template. The presented results show a significant increase in precision and discrimination
power while preserving the ability to detect large anatomical deviations; as such they hold great potential in
clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific bio-
markers or to quantify drug effects.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Progressive brain atrophy can be observed in a variety of neurode-
generative disorders. Several longitudinal studies have demonstrated
a complex, regionally and temporally dynamic series of changes, that
occur in normal aging and that are uniquely distinct in neurodegener-
ative disorders, such as Alzheimer's disease, Huntington's disease,
and schizophrenia. The availability of large, high quality longitudinal
datasets, has already begun to significantly expand our ability to
evaluate selective, progressive anatomical changes. One of the major
caveats in these studies is the use of tools that were originally
designed for the analysis of data collected cross-sectionally. Inherent
noise in cross-sectional methods, based on a single common template
or atlas, often shadow individual differences and result in more het-
erogeneous measurements. However, by exploiting the knowledge
that within-subject anatomical changes are usually significantly
smaller than inter-individual morphological differences, it is possible
to reduce within-subject noise without altering the between-subject
variability. As such, the development of unbiased longitudinal analyt-
ical approaches are critical in fully elucidating phenotypic variability,
and in the construction of imaging based biomarkers to quantify
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response in clinical trials and to evaluate disease modifying therapies.
In particular, these tools can be expected to increase the sensitivity
and reliability of the measurements sufficiently to require smaller
sample sizes and fewer time points or shorter follow-up periods.

The novel longitudinal methodologies described in this paper are
designed to overcome the most common limitations of contemporary
longitudinal processing methods: the introduction of processing bias,
over-regularization, and the limitation to process only two time
points. In addition, building on FreeSurfer (Fischl, in press; Fischl et
al., 2002), our methods are capable of producing a large variety of re-
liable imaging statistics, such as segmentations of subcortical struc-
tures, cortical parcellations, pialand white matter surfaces as well as
cortical thickness and curvature estimates.

Bias

Longitudinal image processing aims at reducing within subject
variability, by transferring information across time, e.g. enforcing tem-
poral smoothness or informing the processing of later time points
with results from earlier scans. These approaches, however, are suscep-
tible to processing bias. It is well documented that especially
interpolation asymmetries can influence downstream processing and
subsequent analyses (Thompson and Holland, 2011; Yushkevich et al.,
2010) and can result in severe underestimation of sample sizes due to
overestimation of effect sizes. Interpolation asymmetries occur when,
for example, resampling follow-up images to the baseline scan and
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thus smoothing only the follow-up images while keeping the baseline
image untouched. As described in Reuter and Fischl (2011) and as
demonstrated below, interpolation asymmetries are not the only source
of bias. Consistently treating a single time point, usually baseline, differ-
ently from others, for instance, to construct an atlas registration or to
transfer label maps for initialization purposes, can already be sufficient
to introduce bias. Bias is a problem that often goes unnoticed, due to
large measurement noise, imprecise methods, small sample sizes or in-
sufficient testing. Not treating all time points the same can be problem-
atic as the absence of bias cannot simply be proven by not finding it.
Furthermore, the assumption that group effects are not (or onlymildly)
influenced by processing bias is usually incorrect. It is rather unlikely
that bias affects all groups equally, considering that one group usually
shows only little longitudinal change, while the other undergoes signif-
icant neurodegeneration. For these reasons, we carefully designed and
implemented our longitudinal methods to treat all time points exactly
the same. Another potential source of bias may be induced when con-
straining sequential results to be smooth. Temporal regularization can
limit the power of an algorithm to detect large changes. We aim at
avoiding this kind of over-regularization by initializing the processing
in each timepointwith common information, but allowing themethods
to evolve freely.

It should be noted, that different types of bias, not induced by the
image analysis software but rather related to pre-processing or image
acquisition steps, can already be present in the images, equally affect-
ing both longitudinal and independent (cross-sectional) processing.
Examples include the use of different scanner hardware, different
scanner software versions, different calibration, acquisition parame-
ters or protocols across time. These biases cannot easily be removed
by downstream processing, although they can possibly be reduced.
Other types of bias are related to intrinsic magnetic properties of
the tissue (e.g. T1, T2*) across time (aging) or across groups (neuro-
degenerative disease) potentially introducing bias in measures of
thickness or volume (Salat et al., 2009; Westlye et al., 2009). Howev-
er, since age and disease level are usually very similar within-subject,
the rate of change in a longitudinal study will be less affected than
cross-sectional volume or thickness analysis.

Related work

In SIENA, Smith et al. (2001, 2002) introduced the idea of trans-
forming two input images into a halfway space, to ensure both under-
go the same resampling steps to avoid interpolation bias. However,
traditionally, the baseline image is treated differently from the
follow-up images. Often longitudinal processing is approached by
employing higher order registration methods to compute and analyze
the deformation field that aligns baseline to a follow-up scan, e.g.
SPM2 uses high dimensional warps Ashburner et al. (2000)). These
procedures are usually not inverse consistent and resample only the
follow-up images. SPM, for example, has been employed in longitudi-
nal studies of neurodegeneration in two time points (Chételat et al.,
2005; Kipps et al., 2005) without specifically attempting to avoid
asymmetry-related bias. The longitudinal segmentation algorithm
CLASSIC (Xue et al., 2006) jointly segments a 4D image via longitudi-
nal high-order warps to the baseline scan using an elastic warping al-
gorithm. Also Avants et al. (2007) work in the baseline space as a
reference frame. In that work, first a spatiotemporal parameterization
of an individual's image time series is created via nonlinear registra-
tion (SyN). The underlying diffeomorphism is then resampled at the
one year location and compared to baseline to quantify the annual at-
rophy. Qiu et al. (2006) present a method for longitudinal shape anal-
ysis of brain structures, quantifying deformations with respect to
baseline and transporting the collected information from the subject
baseline to a global template. Other authors focus on cortical mea-
sures. Han et al. (2006) describe a method to initialize follow-up sur-
face reconstruction with surfaces constructed from the baseline scans.
Li et al. (2010) register follow-up images to the baseline (rigidly and
nonlinearly based on CLASSIC) and then keep the directionsfixed across
time along which they locally compute thickness in the cortex.

Over the last few years, several authors attempt to avoid proces-
sing bias. In 2009, initial software versions of our methods, relying
on unbiased within-subject templates as described in this paper,
were made publicly available (Reuter, 2009; Reuter et al., 2010a). Re-
lated efforts, however, aim primarily at removing only interpolation
bias. Avants et al. (2010), for example, similarly utilize within-
subject templates, while still treating the baseline image consistently
differently from follow-up time points. Nakamura et al. (2011) avoid
bias only in the registration procedure by combining forward and in-
verse linear registrations to construct symmetric pairwise maps. Also
combining forward and backward transformations, Holland and Dale
(2011) use a nonlinear pairwise registration and intensity normaliza-
tion scheme to analyze the deformation in follow-up images by mea-
suring volume changes of labels defined in baseline space.

Approach

In this work we present an automated longitudinal processing
pipeline that is designed to enable a temporally unbiased evaluation
of an arbitrary number of time points by treating all inputs the
same. First an unbiased, within-subject template is generated by iter-
atively aligning all input images to a median image using a symmetric
robust registration method (Reuter et al., 2010b). Because of the
simultaneous co-registration of all time points, processing can be per-
formed in a spatially normalized voxel space across time reducing
variability of several procedures. Furthermore, the median image
functions as a robust template approximating the subject's anatomy,
averaged across time, and can be used as an estimate to initialize
the subsequent segmentations.

Cortical and subcortical segmentation and parcellation procedures
involve many complex nonlinear optimization problems, such as to-
pology correction, nonlinear atlas registration, and nonlinear spheri-
cal surface registration. These nonlinear problems are typically
solved with iterative methods. The final results can thus be sensitive
to the selection of a particular starting point. However, by initializing
the processing of a new data set in a longitudinal series with common
information, the variations in the processing procedures can be effi-
ciently reduced and the robustness and sensitivity of the overall
longitudinal analysis significantly improved. Increased reliability
often comes at the cost of over-regularization by enforcing temporal
smoothness. Our methods do not add explicit constraints such as
temporal smoothness or higher-order within-subject warps to trans-
fer labels, nor do they incorporate the order of time points at all.
Higher precision is achieved solely by common initialization while
segmentation and surface reconstruction procedures are allowed to
evolve freely. We demonstrate that the resulting measurements are
significantly more reliable in both healthy controls (in test–retest,
simulated noise and simulated atrophy) as well as in neurodegenera-
tion studies. We show that the increased precision enables greater
power to evaluate more subtle disease effects or to reduce sample
sizes. This longitudinal processing stream is made available as part
of FreeSurfer (Fischl, in press; Fischl et al., 2002; Reuter, 2009). The
FreeSurfer software package is an open access resource that has
gained popularity in evaluating cortical and subcortical measures.

Impact

An early version of the methods described in this paper has been
successfully employed in a variety of studies analyzing progressive
changes in Alzheimer's disease (Chiang et al., 2010, 2011; Desikan
et al., 2010; Sabuncu et al., 2011), Huntington's disease (Rosas et al.,
2011), memory training (Engvig et al., 2010) and for the validation
of prospective motion correction (Tisdall et al., in press). The
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Alzheimer's Disease Neuroimaging Initiative (ADNI), for instance,
makes available2 their raw image data and derived measures, pro-
cessed with the initial version of our longitudinal method (FS 4.4).
ADNI is one of the largest publicly available longitudinal image data
sets, consisting of more than 3000 scans, released with the goal to de-
termine in-vivo biomarkers for the early detection of AD. Although
our initial processing methods that were used for the derived mea-
sures are less powerful than the newer version presented in this
paper, the available results are still of great importance to researchers
without the possibility to locally process the raw images, as well as to
function as a benchmark for method development and comparison
(Holland et al., 2011).

Currently, large datasets such as ADNI are under consideration for
other neurological diseases. As such, the highly sensitive, reliable and
fully automated unbiased longitudinal methods described in this
paper have the potential to help us understand natural progression
of regionally and spatially selective neurodegeneration as occurs in
distinct neurological disorders. The resulting, subject specific, mor-
phometric measurements yield biomarkers that potentially serve as
surrogate endpoints in clinical trials, where the increase of statistical
power is of most immediate importance.

Methods

Overview of longitudinal processing pipeline

The proposed processing of longitudinal data consists of the
following three steps:

1. [CROSS]: First all time points of all subjects are processed indepen-
dently. This is also called cross-sectional processing. Here a full
image segmentation and surface reconstruction for each time point
is constructed individually. Some of this information is needed later
during the longitudinal processing and to construct the subject tem-
plate in the next step.

2. [BASE]: For each subject a template is created from all time points
to estimate average subject anatomy. Often the within-subject
template is also referred to as the subject ‘base’ (different from
baseline scan!) or simply as the template. Here an unbiased medi-
an image is used as the template and a full segmentation and sur-
face reconstruction is performed. We describe the creation of
the subject template in the following sections.

3. [LONG]: Finally each time point is processed “longitudinally”,
where information from the subject-template [BASE] and from
the individual runs [CROSS] is used to initialize several of the algo-
rithms. A [LONG] process usually takes about half the time to com-
plete than a [CROSS] or [BASE] run.

The improved and more consistent results from the final set of
[LONG] runs (step 3) provide the reliable input for post-processing
or subsequent statistical analysis.

In step 3 above, the longitudinal processing of each time point
is initialized with information from the subject template [BASE] and
the [CROSS] results to reduce variability. However, depending on
the flexibility of the individual algorithms, this general procedure
may sacrifice accuracy and potentially underestimate changes of
greater magnitude. Whenever information is transferred across
time, e.g. to regularize or explicitly smooth results, methods can
become biased towards underestimating change and accuracy may
suffer particularly when measuring longitudinal change over long pe-
riods of time. While a conservative estimate of change is often prefer-
able in a power analysis, than an overestimation, we focus on
avoiding asymmetries and over-regularization to remain as accurate
and unbiased as possible. The longitudinal processing step (see also
2 http://adni.loni.ucla.edu/research/mri-post-processing/.
Fig. 1) mainly consists of the following procedures (more details
can be found online (Reuter, 2009)).

Spatial normalization and NU intensity
All inputs are resampled to the unbiased template voxel space

to further reduce variability (since FS 5.1). This can be achieved
during the motion correction and conforming steps by composing
the linear transforms and only resampling once to avoid additional
resampling/smoothing. For this paper, we employ linear interpola-
tion, but recently switched to cubic B-spline interpolation for future
releases to reduce interpolation artifacts (Thevenaz et al., 2000).
Then acquisition bias fields in [LONG] are independently corrected
using a non-parametric non-uniform intensity normalization (N3)
(Sled et al., 1998).

Talairach registration
The affine map from the robust template [BASE] to the Talairach

space is fixed across time. It can be assumed that a single global affine
transformation to the Talairach coordinate system is appropriate
since the bulk of the anatomy within-subject is not changing. The ad-
vantages of this approach lie in the noise reduction obtained by
avoiding the use of individual intensity volumes for each time point
and in consistent intra-cranial volume estimation. Data is only copied
from the subject template if fixing it across time is meaningful, for ex-
ample the affine Talairach registration or the brain mask (see green
solid arrows in Fig. 1).

Brainmask creation
The brain mask, including some cerebrospinal fluid (CSF), is kept

constant for all time points (in [LONG] and in the subject template
[BASE]) to reduce variability under the assumption that the location
and size of the intracranial vault are not changing (although of course
the contents may be). The brain mask is constructed as the union
(logical OR) of the registered brain masks across time. In other
words, a voxel is included in the brain mask if it is included in any
of the time points, to ensure no brain is accidentally clipped. Although
the brain mask is fixed across time by default, it can be adjusted in
individual time points manually if necessary (e.g. by editing it or
mapping it from the initial [CROSS] results).
ing information flow at a single longitudinal run. Dashed line: information is used for
initialization. Solid line: information is copied.

http://adni.loni.ucla.edu/research/mri-post-processing/
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Normalization and atlas registration
For the second intensity correction (pre-segmentation filter) (Dale

et al., 1999), each [LONG] run is initialized with the common set of
control points that were constructed in the [BASE], to encourage con-
sistency across time. Similarly for the normalization to the probabilis-
tic atlas (Fischl et al., 2002, 2004a), the segmentation labels of the
[BASE] are passed as a common initialization in each time point
(dashed arrows in Fig. 1). Also the nonlinear atlas registration is ini-
tialized with results from the [BASE]. However, these procedures are
intrinsically the same as before and are still performed for each time
point to allow for the necessary flexibility to detect larger departures
from the average anatomy of the [BASE]. Starting these procedures
without a common initialization would only increase variability as
more time points may terminate in different local minima.

Subcortical segmentation
Specifically for the subcortical segmentation we allow even more

flexibility. Instead of initializing it with the template segmentation,
a fused segmentation is created for each time point by an intensity
based probabilistic voting scheme. Similar to Sabuncu et al. (2010),
where training label maps are fused for the segmentation, we also
use a weighted voting scheme to construct a fused segmentation of
each time point from the initial segmentations of all time points
obtained via independent processing [CROSS] (using the standard
atlas based registration procedure in FreeSurfer). Based on local inten-
sity differences between the time points at each voxel we employ a
kernel density estimation (Parzen window) using a Gaussian kernel
on the registered and intensity normalized input images and initial
labels. In other words, if the intensity at a given location is similar
at another time point, the corresponding label is highly probable.
This weighted majority voting (including votes from all time points)
yields the labels to construct the fused segmentation. Since this pro-
cedure is driven by all time point's initial segmentations rather than
the template's segmentation, it allows for more flexibility. For each
time point, it represents the anatomy more accurately than the seg-
mentation of the template. In order to correct for potential remaining
noise, each fused label map is used to initialize a final run through the
regular atlas based segmentation procedure. This fine-tuning step
usually converges quickly.

Surfaces reconstruction
The regular cortical surface construction in FreeSurfer starts with

the tessellation of the gray matter / white matter boundary, automat-
ed topology correction (Fischl et al., 2001; Ségonne et al., 2007), and
surface deformation following intensity gradients to optimally place
the gray/white and gray/CSF borders at the location where the great-
est shift in intensity defines the transition to the other tissue class
(Fischl and Dale, 2000). In the longitudinal stream, the white and
pial surfaces in each time point are initialized with the surfaces from
the template [BASE] and are allowed to deform freely. This has the
positive effect that surfaces across time demonstrate an implicit ver-
tex correspondence. Furthermore, manual editing to fix topology or
surface placement is in many cases only necessary in the subject's
template [BASE] instead of in each individual time point, reducing
potential manual intervention (and increasing reliability).

Cortical atlas registration and parcellations
Once the cortical surface models are complete, a number of

deformable surface procedures are usually performed for further
data processing. The spherical registration (Fischl et al., 1999b) and
cortical parcellation procedures (Desikan et al., 2006; Fischl et al.,
2004b) establish a coordinate system for the cortex by warping indi-
vidual surface models into register with a spherical atlas in a way
that aligns the cortical folding patterns. In the longitudinal analysis
we make the first-order assumptions that large-scale folding patterns
are not substantially altered by disease, and thus assume the
spherical transformation of the subject template to be a good initial
approximation. In [LONG] the surface inflation with minimal metric
distortion (Fischl et al., 1999a) is therefore copied from the [BASE]
to all time points. The subsequent non-linear registration to the
spherical atlas and also the automatic parcellation of the cerebral cor-
tex in each time point are initialized with the results from the [BASE].
This reliably assigns a neuroanatomical label to each location on the
surface by incorporating both geometric information derived from
the cortical model (gyral and sulcal structure as well as curvature),
and neuroanatomical convention.

Note that no temporal smoothing is employed, also the order of time
points is not considered. The above steps are meaningful under the as-
sumptions that head size is relatively constant across time which is
reasonable for most neurodegenerative diseases but not, for example,
for early childhood development. However, users can optionally keep
individual brainmasks or introduce manual edits to accommodate for
special situations, at the cost of decreased reliability.

Within-subject template

Atlas construction, usually creating a template of several subjects,
has been an active field of research. For example, Joshi et al. (2004),
Avants and Gee (2004) or Ashburner (2007) approach unbiased non-
linear atlas construction by iteratively warping several images to a
mean. In order to create a robustwithin-subject template of several lon-
gitudinal scans, we need to make several design decisions. All time
points need to be treated the same to avoid the possible introduction
any asymmetries. Furthermore, we use only a rigid transformation
model to remove pose (or optionally an affine transformation to addi-
tionally remove scanner calibration differences). Currently we avoid
higher order warps to not introduce any temporal smoothing con-
straints or worse, incorrect correspondence that is relied upon by
downstream processing (e.g. when transferring labels). We do not
assume exact tissue correspondence in our model. Finally, instead of the
commonly used intensity mean, a voxel-wise intensity median is
employed to create crisper averages and remove outliers such as
motion artifacts from the template.

Template estimation of N images Ii is usually stated as a minimiza-
tion problem of the type:

Î ; φ̂ i

n o
:¼ argmin

I;φi

XN
i¼1

E Ii∘φi; Ið Þ þ D φið Þ2 ð1Þ

where the template Î and the transformations φ̂ i, that map
each input image to the common space, need to be estimated.
For robustness and other reasons as described below, we set
the image dissimilarity metric E(I1, I2)=∫Ω|I1(x)− I2(x)|dx where
Ω denotes the coordinate space. Thus, for fixed transformations
φi the minimizing Î is given by the voxel-wise median of all Ii.
For a rigid transformation consisting of translation and rotation

φ ¼ t
→
; r

� �
∈R3 � SO 3ð Þ, we choose the following squared distance

with respect to identity D t
→
; r

� �2 ¼ ‖ t
→

‖2 þ ‖ R−I ‖2F , where we

compute the Frobenius norm of the difference between the identity
I and the 3×3 rotation matrix R representing the rotation r. Since
the inputs Ii are rather similar, Î can be approximated by the
following iterative algorithm:

1. Compute the median of the N input images Î .
2. Register and resample each input image to Î .
3. Continue with step 1 until the obtained transforms φi converge.

The registration step adjusts the location of the inputs closer to Î ,
so that the next average can be expected to improve. This iterative
algorithm is performed on a Gaussian pyramid of the images, with
differently many iterations on each resolution. The inexpensive low
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resolutions are iterated more often to quickly align all images approx-
imately, while the more time consuming higher resolutions only need
to refine the registration in a few steps.

Robustness

For the registration of two images at the core of the template esti-
mation, we use a robust and inverse consistent registrationmethod as
described in Reuter et al. (2010b). Inverse consistency means that the
registration φij of imagesIi to Ij is exactly the inverse of φji=φij

−1,
which is usually not guaranteed. This property keeps individual regis-
trations unbiased and is achieved by a symmetric resampling step in
the algorithm to the halfway space between the two input images,
as well as a symmetric model, to avoid estimation and averaging of
both forward and backward transformations. This approach, incorpo-
rating the gradients of both inputs, additionally seems to be less
prone to local optima. While pairwise symmetry is not strictly neces-
sary to keep the template unbiased it avoids unnecessary iterative
averaging in the common case of only two input images, where
both can be resampled at the halfway space after a single registration
step. Another advantage of the robust registration algorithm is its
ability to reduce the influence of outlier regions resulting in highly ac-
curate brain registrations, even in the presence of local differences
such as lesions, longitudinal change, skull stripping artifacts, remain-
ing dura, jaw/neck movement, different cropping planes or gradient
nonlinearities. Reuter et al. (2010b) show the superiority of thismethod
over standard registration tools available in the FSL (Jenkinson et al.,
2002; Smith et al., 2004) or SPM packages (Ashburner and Friston,
1999; Collignon et al., 1995) with respect to inverse consistency, noise,
outlier data, test–retest analysis and motion correction.

In spite of the fact that in the above template estimation algorithm
convergence is not guaranteed, the procedure works remarkably well
Fig. 2. Unbiased template estimation for a subject with neurodegenerative disease and sig
inverse consistent robust registration method, resulting in a template image and simultane
even if significant longitudinal change is contained in the images (see
Fig. 2), due to the robustness of the median image. In this context see
also related work in Fletcher et al. (2009) who construct a different
intrinsic median for atlas creation by choosing “metamorphosis” as
the metric on the space of images that accounts for both geometric
deformations as well as intensity changes. In a mean image outlier
regions and longitudinal structural change will introduce blurring.
Strong motion artifacts in specific time points may corrupt the
whole image. The median, however, suppresses outlier artifacts,
ghosts and blurry edges and seems to be a good choice as normality
cannot be assumed due to longitudinal change, motion artifacts etc.
Only for the special case of two time points, the median reduces to
the mean and may contain two ghost images. Registration with this
ill-defined average can be avoided by computing the mid-space di-
rectly from the registration of the two inputs. In general, the use of
the median leads to crisper within-subject templates. It is therefore
well suited for constructing initial estimates of location and size of
anatomical structures averaged across time or for creating white
matter and pial surfaces. As described above this information is
used to inform the longitudinal processing of all individual time
points.

To demonstrate the effect of the median, Fig. 3 shows the differ-
ence between the mean and median template of a series of 18 time
point images of a Huntington's disease subject, taken over a span of
7 years. Some of the time points contain strong motion artifacts. Ad-
ditionally, this subject exhibits significant atrophy, i.e. approximately
8% volume loss in the caudate and significant thinning of the corpus
callosum. Due to the robustness of the median the template image re-
mains crisp with well defined anatomical boundaries, in spite of the
longitudinal change, as opposed to the smoother mean image. In a
two bin histogram of the gradient magnitude images, the bin with
larger gradient magnitudes contains 4.4% of the voxels in the median
nificant atrophy: All time points are iteratively aligned to their median image with an
ously a co-registration of all time points.



Fig. 3. Comparison of mean and median template image for a series of 18 images (7 years) of a subject with neurodegenerative disorder (Huntington's disease). The difference
image (top row) between median and mean reveals large differences in regions that change over time (e.g. ventricles, corpus callosum, eyes, neck, scalp). Below are close-ups
of the mean image (left, softer edges) and the median image (right, crisper edges).
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and 3.7% in the mean image, indicating crisper edges in the median.
The difference images in the top row of Fig. 3 localize the differences
between the mean and median image mainly in regions with large
longitudinal change such as the ventricles, corpus callosum, eyes,
neck and scalp. Because of the crispness of the median image, co-
registration of all 18 inputs needed only three global iterations,
while it took five iterations to converge for the mean at a higher re-
sidual cost.

Improved template estimation

We found in our tests that the template estimation converges
without pre-processing. However, it may need a large number of iter-
ations to converge in specific cases and thus a considerable amount of
processing time (>1 h). If the early average images are very distorted
the corresponding registrations will be inaccurate. Once the average
becomes crisper the convergence is fast. The following procedure is
designed to speed up computations, by initially mapping all images
to a mid-space and starting the algorithm there:

1. First the registration of each image Ii to a randomly selected image
Ĩ is computed, to get estimates of where the head/brain is located
in each image with respect to the location in Ĩ. These registrations
do not need to be highly accurate as they are only needed to find
an approximation to the mid-space for the initialization. However,
highly accurate registration in this step will reduce the number of
iterations later.

2. Then the mid-space is computed from the set of transformation
maps and all images are resampled at that location. See
Appendix B for details on how the average space is constructed.

3. The iterative template estimation algorithm (Within-subject
template section) is initialized with the images mapped to the
mid-space and, in most cases, needs only two further iterations
to converge: One to register all images to the average image and
another one to check that no significant improvements are
possible.
Since all images are remapped at themid-space location, including
image Ĩ, they all undergo a common resampling step removing any
interpolation bias. The random asymmetry that may be introduced
when selecting image Ĩ as the initial target is further reduced due to
the fact that the registration method is inverse consistent, so the
order of registration (image Ĩ to image Ii or vice versa) is irrelevant.
Alternatively it is possible to construct all pairwise registrations and
compute the average location considering all the information (e.g.
by constructing average locations using each input as initial target in-
dependently and averaging the N results). This, however, significantly
increases computational cost unless N is very small and seems unnec-
essarily complicated given that the above algorithm already removes
resampling asymmetries and randomizes any potential remaining
asymmetry possibly induced by choosing an initial target.
Global intensity scaling

If the input images show differences in global intensity scales, the
template creation needs to adjust individual intensities so that all im-
ages have an equal weight in the final average. This can be done by
computing a global intensity scale parameter in each individual regis-
tration. Once we know the intensity scale si of each image with re-
spect to the target (initially image Ĩ but later average template), the
individual intensities can be adjusted to their geometric mean

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πn

i¼1si
n
q

ð2Þ

by scaling each image intensity values with si
S . Note, in the longitudinal

processing stream presented in this paper, intensity normalized skull
stripped images (norm.mgz in FreeSurfer) are used as input to con-
struct the co-registration, thus global intensity scaling during the
registration step is not necessary, however, it can be important in
other applications.

image of Fig.�3
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Affine voxel size correction

It may be desired to adjust for changes in scanner voxel sizes, pos-
sibly induced by the use of different scanners, drift in scanner hardware,
or different scanner calibrations, which are frequently performed espe-
cially after software/hardware upgrades. Takao et al. (2011) find that
even with scanners of the exact same model, inter-scanner variability
affects longitudinal morphometric measures, and that scanner drift
and inter-scanner variability can cancel out actual longitudinal brain
volume change without correction of differences in imaging geometry.
Clarkson et al. (2009) compare phantom based voxel scaling correction
with correction using a 9 degrees of freedom (DOF) registration and
show that registration is comparable to geometric phantom correction
as well as unbiased with respect to disease status. To incorporate auto-
matic voxel size correction, we design an optional affine [BASE] stream,
where all time points get mapped to an average affine space by the fol-
lowing procedure:

1. First perform the rigid registration as described above on the skull
stripped brain images to obtain an initial template image and aver-
age space.

2. Then use the rigid transforms to initialize an iterative affine regis-
tration employing the intensity normalized full head images.

3. Fine tune those affine registrations by using the affine maps to ini-
tialize a final set of registrations of the skull stripped brain images
to the template, where only rigid parameters are allowed to
change.

Since the registration of the brain-only images in the final step is
rather quick (a few minutes), especially with such a high quality ini-
tialization, the fine tuning step comes at little additional effort and
ensures accurate brain alignment. Note, that we also propose a full af-
fine (12 DOF) registration as two non-uniform orthogonal scalings
and a rotation/translation in the middle generally cannot be repre-
sented by 9 DOF.

Adding time points

Opposed to independent processing, longitudinal processing eval-
uates concurrently scans that have been collected at different time
points in order to transfer information across time. As a result, it al-
ways implicitly requires a delay in processing until all of the time
points are available to remain unbiased, independent of the longitudi-
nal method used. While this would be standard in a clinical therapeu-
tic study, it is less optimal in observational studies. However, due to
the robust creation of the subject median template, the subsequent
addition of time points, assuming that they are not collected signifi-
cantly later in time, would not be expected to have a large influence
on the analyses if sufficient temporal information is contained in
the template already. The purpose of the subject template is mainly
to remove interpolation bias and to initialize processing of the indi-
vidual time points in an unbiased way. Similar to atlas creation,
where a small number of subjects is usually sufficient for conver-
gence, it can be expected that within subject template estimation
converges even faster, due to the smaller variability. Nevertheless,
in order to avoid being potentially biased with respect to a healthi-
er/earlier state, it is recommended, if possible, to recreate the tem-
plate from all time points and reprocess all data until further studies
investigate this issue more thoroughly.

Results and discussion

Data

TT-115
Two different sets of test–retest data are analyzed below. The first

set consists of 115 controls scanned twice within the same session
and will be referred to as TT-115. Two full head scans (1 mm isotropic,
T1-weighted multi-echo MPRAGE (van der Kouwe et al., 2008),
Siemens TIM Trio 3T, TR 2530 ms, TI 1200 ms, multi echo with BW
650 Hz/px and TE=[1.64 ms, 3.5 ms, 5.36 ms, 7.22 ms], 2× GRAPPA
acceleration, total acq. time 5:54 min) were acquired using a 12 chan-
nel head coil and then gradient unwarped. The two scans
were separated by a 60 direction 2 mm isotropic EPI based diffusion
scan and accompanying prior gradient echo field map (2:08 min,
9:45 min), not used here. The two multi-echo MPRAGE images are
employed to evaluate the reliability of the automatic segmentation
and surface reconstruction methods. It can be assumed that biological
variance and variance based on the acquisition is minimized, therefore,
this data will be useful to reveal differences in the two processing
streams (independent processing versus longitudinal processing).

TT-14
We also evaluate a second test–retest set consisting of 14 healthy

subjects with two time points acquired 14 days apart (TT-14). The
images are T1-weighted MPRAGE full head scans (dimensions 1 mm×
1 mm×1.33 mm, Siemens Sonata 1.5T, TR 2730 ms, TI 1000 ms, TE
3.31 ms). Each time point consists of two within session scans that
were motion corrected and averaged to increase signal to noise ratio
(SNR). This data set exhibits a lower SNR than the TT-115 above, since
it was acquired using a volume coil and at a lower field strength of
1.5T. Because of this and the larger timedifference it therefore better re-
flects the expected variability of a longitudinal study and will be used
for power analyses below.

OA-136
To study group discrimination power in dementia in both proces-

sing streams we analyze a disease dataset: the Open Access Series of
Imaging Studies (OASIS)3 longitudinal data. This set consists of a lon-
gitudinal collection of 150 subjects aged 60 to 96. Each subject was
scanned on two to five visits, separated by approximately one year
each for a total of 373 imaging sessions. For each subject and each
visit, 3 or 4 individual T1-weighted MPRAGE scans (dimensions
1 mm×1 mm×1.25 mm, TR 9.7 ms, TI 20 ms, TE 4 ms) were acquired
in single sessions on a Siemens Vision 1.5T. For each visit two of the
scans were selected based on low noise level in the background (indi-
cating high quality, i.e., no or little motion artifacts). These two scans
were then registered and averaged to increase signal to noise ratio
and used as input. The subjects are all right-handed and include
both men and women. 72 of the subjects were characterized as
non-demented for the duration of the study and 64 subjects as de-
mented. Here we do not include the third group of 14 converters
who were characterized as non-demented at the time of their initial
visit and were subsequently characterized as demented at a later
visit. The dataset therefore only includes 136 subjects and will be
called OA-136.

HD-54
To highlight improvements in situations with less statistical power,

a second and smaller disease data set is employed containing 10 healthy
controls (C), 35 pre-symptomatic Huntington's disease subjects of
which 19 are near (PHDnear) and 16 far (PHDfar) from estimated
onset of symptoms, and 9 progressed symptomatic Huntington's pa-
tients (HD). The near and far groups where distinguished based on
the estimated time to onset of symptoms using CAG repeat length and
age (Langbehn et al., 2004) where far means expected onset in more
than 11 years. Each subject has image data from three visits approxi-
mately half a year to a year apart (dimensions 1 mm×1 mm×1.33 mm,
T1-weighted MPRAGE, Siemens Avanto 1.5T, TR 2730 ms, TI 1000 ms,
TE 3.31 ms, 12 channel head coil). Scanner software versions have

http://www.oasis-brains.org/
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changed for several subjects between the visits and in theHDgroup two
subjects even have 1–2 of their scans on an older Siemens Sonata scan-
ner, which adds potential sources of variability. This data will be re-
ferred to as HD-54.

Bias in longitudinal processing

Yushkevich et al. (2010) demonstrated that interpolation asym-
metries can bias longitudinal processing. As mentioned above, our
method prevents interpolation and other asymmetry induced bias by
treating all time points equivalently. In Reuter and Fischl (2011) we
argue that avoiding only resampling bias may not be sufficient as dif-
ferent sources of bias exist, such as informing processes in follow-up
images with information from baseline. To demonstrate the effect we
introduce asymmetry by using information from one of the time
points (segmentation and surfaces) to initialize processing of the
other on the TT-115 dataset. To remove any potential change in the
images, the order of time points is previously randomized for this
test. Note, that none of the inputs are mapped or resampled to base-
line or a common space but stay in their native spaces, only label
maps and surfaces are transferred. As a dimensionless measure of
change we compute the symmetrized percent change (SPC) of
the volume of a structure with respect to the average volume,4

defined as:

SPC :¼ 100
V2−V1ð Þ

0:5 V1 þ V2ð Þ ð3Þ

where Vi is the volume at time point i. Fig. 4 shows the SPC for differ-
ent structures when processing the test–retest data both forward
(initializing time point 2 with results from time point one) [BASE1]
and backward [BASE2]. One can expect average zero change in each
structure as both images are from the same session, but instead the
processing bias can clearly be seen, even for the cortical volumes
where no interpolation is used at all when mapping the surfaces. It
can be assumed that the bias is introduced by letting the results
evolve further in the other time point. It should be noted that the
bias affects different structures differently, and although it is strong,
it cannot, for example, be detected in the left thalamus. Furthermore,
it can be observed in Fig. 4 that the proposed processing stream, [FS-
LONG] and [FS-LONG-rev] where time points are passed in reversed
4 See Berry and Ayers (2006) for advantages (such as symmetry and increase of
power) of using the average for normalization rather than the volume at baseline to
compute the percent change.
order when constructing the template, shows no bias. The remaining
small differences can be accounted to subtle numerical instabilities
during the template estimation.

Robustness, precision and accuracy

For the following synthetic tests only the first time point of data
set TT-14 is taken as baseline. It is resliced to 1 mm isotropic voxels,
intensity scaled between 0 and 255. The synthetic second time
point is a copy of that image, but artificially modified to test robust-
ness with respect to noise and measurement precision of the longitu-
dinal stream. As Rician noise is nearly Gaussian at larger signal to
noise ratios, robustness with respect to noise is tested by applying
Gaussian noise (σ=1) to the second time point. Fig. 5 shows the per-
cent change with respect to the original in the hippocampal volume
for both hemispheres for cross-sectional and longitudinal processing.
The longitudinal stream is more robust and reduces the variability
(increased precision).

In order to assess precision and accuracy of the longitudinal analy-
sis we applied approximately 2% simulated atrophy to the hippocam-
pus in the left hemisphere and took this synthetic image as the
second time point. The atrophy was automatically simulated by re-
ducing intensity in boundary voxels of the hippocampus with partial
ventricle volume (labels as reported by FreeSurfer). See Appendix C
for details. Note, that real atrophy is more complex and variates
among individuals and diseases. The well defined atrophy used here
should be accurately detected by any automatic processing method.
It can be seen in Fig. 6 that the longitudinal analysis detects the atro-
phy more precisely and also shows less variability around the zero
mean in the right hemisphere. Based on these results neither method
can be determined to be biased and both accurately find the ground
truth, but longitudinal processing with higher precision.

Test–retest reliability

In order to evaluate the reliability of the longitudinal scheme we
analyze the variability of the test–retest data sets (focusing on TT-
115). Variability of measurements can have several sources. Real an-
atomical change can occur in controls, e.g. due to dehydration, but
is unlikely in within-session scans. More likely, there will be variabil-
ity due to acquisition procedures (motion artifacts, change of head
position inside the scanner etc.). In TT-115, for example, head posi-
tion has changed significantly as subjects sink into the pillow and
relax their neck muscles (mean: 1.05 mm, pb10−8) during the
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Fig. 5. Effect of simulated noise (σ=1) on hippocampal volume measurements. The longitudinal processing is less affected.
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12 min diffusion scan separating the test–retest. Acquisition variabil-
ity is of course identical for both processing methods. Finally there is
variability due to the image processing methods themselves, that we
aim to reduce.

As a dimensionless measure of variability, similar to Eq. (3), we
compute the absolute symmetrized percent change (ASPC) of the volume
of a structure with respect to the average volume:

ASPC :¼ 100
V2−V1j j

0:5 V1 þ V2ð Þ : ð4Þ

The reason is that estimating a mean (here of ASPC) is more robust
than estimating the variance of differences or symmetrized percent
change when not taking the absolute value. Fig. 7 shows the reliability
of subcortical, cortical and white matter segmentation on the TT-115
data set, comparing the independently processed time points [CROSS]
and the longitudinal scheme [LONG]. It can be seen that [LONG] re-
duces variability significantly in all regions. Morey et al. (2010) also
report higher scan–rescan reliability of subcortical volume estimates
in our method compared to independent processing in FreeSurfer
and compared to FSL/FIRST (Patenaude et al., 2011), even before we
switched the longitudinal processing to a common voxel space. In-
stead of processing time points in their native spaces (Long 5.0, and
earlier versions), having all images co-registered to the common tem-
plate space (Long 5.1b) significantly improves reliability in several
structures (see Fig. 8 for a comparison using TT-14).

Note, that often the intraclass correlation coefficient (ICC) (Shrout
and Fleiss, 1979) is reported to assess reliability, which is nearly iden-
tical to Lin's concordance correlation coefficient (Lin, 1989;
Nickerson, 1997), another common reliability measure. Table A.3 in
the Appendix, reports ICC among other measures for subcortical
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Fig. 6. Simulated 2% atrophy in the left hippocampus. The longitudinal processing manages
right hemisphere.
volumes in TT-14. We decided to report ASPC here, as it has a more
intuitive meaning.

A comparison of Dice coefficients to test for overlap of segmenta-
tion labels L1 and L2 at the two time points is reported in Table 1.
Dice's coefficient:

Dice : ¼ L1∩ L2j j
0:5ðjL1jþjL2jÞ

ð5Þ

measures the amount of overlap with respect to the average size
(reaching 1 for perfect overlap). For the Dice computation the
segmentation labels need to be aligned across time. In [LONG] the
time points are automatically resampled to the subject template
space during processing and labels can be directly compared. For
the [CROSS] results the same transforms are used with nearest neigh-
bor interpolation on the label map to also align both segmentations in
the subject template space for the Dice computation. Therefore it is
likely that resampling the label map has an additional detrimental ef-
fect on the [CROSS] results due to partial voluming effects. The longi-
tudinal stream improves the Dice in all regions (see Table 1) and in
each individual subject (not shown). The reported differences are all
significant (pb0.001 based on the Wilcoxon signed rank test).

Finally we analyze reliability of cortical thickness maps. In order to
compare repeated thickness measures at each vertex, a pointwise
correspondence needs to be constructed on each hemisphere within
each subject and across time. Similar to Han et al. (2006) the surfaces
in [CROSS] are rigidly aligned first, but here using the robust registra-
tion of the images as created for the [BASE] (described above). In
[LONG], images and thus surfaces are in the same geometric space
across time and don't need to be aligned. Then, to construct corre-
spondence on the surfaces, the nearest neighbor for each vertex is
TP1 cross TP2 cross TP1 long TP2 long

atter Right Hippocampus with LH−Atropy (pct)

to detect the change more precisely and at the same time reduces the variability in the
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located on the neighboring surface. This is done for both [CROSS] and
[LONG] to treat them the same for a fair comparison, in spite of the
fact that [LONG] implicitly creates a point-wise correspondence of
surfaces across time. The nearest neighbor approach makes use of
the fact that surfaces are very close, which can be assumed for the
same subject across time in this test–retest study, and thus avoids
the complex nonlinear spherical registration, that is commonly used
when registering surfaces across subjects.

Fig. 9 (left) depicts the average vertex wise ASPC as a measure of
variability in [CROSS] (in yellow regions at 6%). Still the thickness dif-
ferences between the two time points is mainly around 0.1 mm and
rarely above 0.2 mm (not shown) and therefore smaller than in Han
et al. (2006), which can be expected as the processing methods
have improved and the TT-115 data is higher quality (multi-echo
MPRAGE 3T as compared to MPRAGE 1.5T, volume coil). Fig. 9 (mid-
dle) shows plots of the difference ([CROSS]-[LONG]) of absolute sym-
metrized percent change for each vertex averaged across all subjects
(smoothing kernel with 15 mm full width at half maximum). The or-
ange/yellow color indicates regions where the longitudinal stream
improves reliability, most prominently in the frontal and lateral cor-
tex (where improvements are more than 4%). Dark red and blue re-
gions are small magnitudes and basically noise. They have not been
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method (Long 5.0) can be seen.
clipped to present the full picture and are not significant. The false
discovery rate corrected (at p=0.05) significance maps in Fig. 9
(right) demonstrate that only the improvements are significant.

Improvements in reliability are summarized in Table 2, showing
the average of the absolute symmetrized percent change in each
hemisphere across all subjects. LONG(cor) is based on the implicit
correspondence across time constructed in the longitudinal steam,
and LONG(reg) uses nearest neighbor registration. [LONG] improves
reliability significantly. The difference of [LONG] (either version)
and [CROSS] yields a pb0.001 in the Wilcoxon signed rank test. Fur-
thermore, nearest neighbor surface registration (reg) in [LONG] and
the implicit correspondence constructed by the longitudinal stream
(cor) yields almost the same results. The remaining difference is sig-
nificant only for TT-115 (at pb0.01 based on Wilcoxon signed rank
test). Note, that the nearest neighbor registration (reg) is used here
for a fair comparison of the test–retest results across methods
([CROSS] vs. [LONG]) and is not recommended in general, as it is
not constrained along the surface. Surfaces may move due to atrophy,
Dice coefficient averaged across subjects for subcortical structures for both test–retest
data sets (TT-14 and TT-115). Longitudinal processing (L-prefix) improves results sig-
nificantly in all instances.

Structure C-14 L-14 C-115 L-115

L WM 0.904 0.948 0.904 0.955
R WM 0.902 0.948 0.902 0.956
L corticalGM 0.888 0.944 0.909 0.962
R corticalGM 0.885 0.944 0.909 0.963
Subcortical GM 0.889 0.948 0.887 0.957
L lat vent 0.922 0.968 0.904 0.966
R lat vent 0.916 0.966 0.896 0.964
L hippocampus 0.872 0.933 0.875 0.948
R hippocampus 0.870 0.936 0.880 0.952
L thalamus 0.906 0.956 0.910 0.971
R thalamus 0.908 0.957 0.915 0.974
L caudate 0.849 0.928 0.861 0.943
R caudate 0.840 0.928 0.858 0.944
L putamen 0.864 0.929 0.874 0.943
R putamen 0.868 0.932 0.875 0.948
L pallidum 0.829 0.916 0.796 0.934
R pallidum 0.830 0.927 0.800 0.937
L amygdala 0.815 0.895 0.850 0.919
R amygdala 0.802 0.881 0.848 0.923
3rd ventricle 0.860 0.949 0.868 0.957
4th ventricle 0.860 0.929 0.847 0.941
L inf lat vent 0.700 0.843 0.705 0.860
R Inf lat vent 0.684 0.841 0.715 0.864
Mean 0.853 0.927 0.859 0.942
StD 0.062 0.034 0.058 0.030



Fig. 9. Left: Average absolute symmetrized percent thickness change at each vertex for TT-115 using [CROSS]. Some regions (yellow) show 6% ASPC and above. Middle: Comparison:
([CROSS]-[LONG]) of average absolute symmetrized percent thickness change at each vertex for TT-115. Blue: [LONG] has larger variability, red/yellow [CROSS] has larger variability.
[LONG] improves reliability in most regions, especially in the frontal and lateral cortex (yellow: more than 2% reduction of variability, frontal and lateral even more than 4%). Blue
and red regions are mainly noise. Right: corresponding significance map, false discovery rate corrected at 0.05. [LONG] improves reliability significantly in most regions.
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potentially causing the nearest neighbor approach to incorrectly pair
vertices from different sides of a sulcus.

Sample size reduction

The lower variability in the longitudinal processing is particularly
important for detecting small effects, such as in drug trials, or for
studies with a small number of subjects.

Instead of reporting an exemplary power analysis, we will more
generally provide the fraction of subjects needed in the [LONG] meth-
od compared to [CROSS]. The reason is that such fractions will be valid
independent of the specific underlying parameters, which can differ
depending on the specific situation, e.g. number of time points, their
variance, effect size, p-value, power. According to Diggle et al.
(2002) longitudinal sample size calculations of a continuous
response for detecting a difference in the rate of change across time
in two groups (each containing m subjects) are usually of the form:

m ¼ 2 zα þ z1−Pð Þ2σ2 1−ρð Þ
N s2x d

2 ð6Þ

• where σ2 denotes the assumed common variance measuring the
unexplained variability in the response,

• ρ the correlation of the repeated observations,
• N the number of time points (assumed to contain no missing values
and to be spaced the same for all subjects),

• zp the pth quantile of a standard Gaussian distribution,
• α the type I error rate (the probability to reject the null hypothesis
when it is correct),

• d=βB−βA smallest meaningful difference in the mean slope (rate
of change) between group A and B to be detected (effect size),

• P the power of the test (the probability to reject the null hypothesis
when it is incorrect),

• and sx ¼ ∑j xj−�x
� �2

=N the within-subject variance of the time
points (more specifically of the explanatory variable, usually the
duration between the first and the j-th visit, assumed to be the
same for all subjects).
Table 2
Average across subjects of the average vertex wise absolute symmetrized percent
thickness change between time points 2 and 1 for the different methods in both data
sets. Skipping the surface registration (reg) in [LONG] and using the implicit correspon-
dence across time constructed by the longitudinal stream (cor) yields similar results.

Hemi CROSS(reg) LONG(reg) LONG(cor)

L TT-14 4.04 3.39 3.44
R TT-14 4.60 3.76 3.80
L TT-115 4.00 3.21 3.26
R TT-115 4.07 3.29 3.33
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Eq. (6) shows that the sample size can be reduced by increasing
the number of time points N, by increasing the correlation of re-
peated measures or by reducing the variability of the response.
As the variability between subjects is usually fixed and cannot be
influenced, one aims at decreasing within-subject variability by
using a more reliable measurement instrument or method. To an-
alyze the effect of switching from independent image processing
[CROSS] to longitudinal processing [LONG], it becomes clear that
all values except σ and ρ are fixed for the two different methods
and the requisite number of subjects decreases with decreasing
variance and increasing correlation. For a power analysis usually
these values are estimated from earlier studies with similar sam-
ples. Here we can compute them based on the test–retest results
TT-14, as 14 days between the scans sufficiently model the vari-
ability of follow-up scans on a different day (using the same
scanner).

The fraction of necessary sample sizes when choosing [LONG] over
[CROSS] is determined by the fraction of variances and correlation:

SSfrac ¼ 100
mL

mC
¼ 100

σ2
L 1−ρLð Þ

σ2
C 1−ρCð Þ : ð7Þ

This ratio specifies what percent of subjects is needed when pro-
cessing the data longitudinally as opposed to independent processing.

Based on variance and correlation results from TT-14, Fig. 10
shows the ratio for several subcortical regions. Given this single test
population to compute variance and correlation, we estimate stability
of these results via bootstrapping (1000 resamples). Fig. 10 therefore
depicts the median, the error bars extend from the 1st to the 3rd
quartile. The results indicate that sample size can usually be reduced
in [LONG] to less than half the size assuming same power, p-value, ef-
fect size and number and variance of time points. The small reduction
in the left caudate is due to the fact that in [CROSS] the correlation of
the measures is very high and almost the same as in [LONG], which is
not true for the other hemisphere and most of the other structures
where the correlation in [CROSS] is usually much lower. Even larger
improvements can be expected when switching to modern acquisi-
tion hardware and methods, for example as used in the TT-115 data-
set (see improvements in Fig. 7). However, we cannot base this
sample size estimation onTT-115 since within-session scans do not
model the noise induced by removing and re-positioning a subject
in the scanner, nor variability due to hydration levels, etc.

Note that the number of subjectsm and the number of time points
n can be swapped in Eq. (6), thus Fig. 10 can also be understood as
showing the reduction in the necessary number of time points in a lon-
gitudinal design when keeping the number of subjects (and variance
of time points) constant. The reduced number of subjects or neces-
sary time points in the longitudinal stream can constitute a significant
reduction in costs for longitudinal studies such as drug trials. Several
other relevant statistics on TT-14 are reported in Table A.3 in the Ap-
pendix for different structures to establish individual power analyses.
Of course these results are specific to the acquisition in TT-14 and
may not be transferable to other studies.

Sensitivity and specificity in neurodegeneration

Since no longitudinal data set with manual labels is freely avail-
able that could be taken as “ground truth”, we analyze a set of images
of different disease groups and demonstrate that longitudinal proces-
sing improves discrimination among the groups. Here we are inter-
ested in detecting differences in the yearly volume percent change.

The longitudinal OASIS dataset OA-136 was selected to analyze
behavior of the processing streams in a disease study where subjects
have differently many visits (2–5). Fig. 11 highlights the improve-
ments of longitudinal processing: more power due to higher
precision to distinguish the demented from the non-demented
group based on the percent volume change with respect to baseline
volume mainly in the hippocampus and entorhinal cortex. Baseline
volume was not taken directly from the results of the first time
point, but instead we used the value of the linear fit within each sub-
ject at baseline to obtain more robust baseline volume estimates for
the percent change computation (for both [CROSS] and [LONG]).
Again the red ‘.’ denotes a p≤0.05, the ‘+’: p≤0.01 and the ‘*’:
p≤0.001 in the Mann–Whitney-U (also Wilcoxon rank-sum) test.
Note that the Mann–Whitney-U test is closely related to the area
under the Receiver Operator Characteristic (ROC) (Mason and
Graham, 2002). For a binary classifier the ROC curve plots the sensi-
tivity vs. the false positive rate (1-specificity). The area under the
curve therefore measures the performance of the classifier. Thus the
significant differences across the groups above imply both improved
sensitivity and specificity to distinguish the different disease stages
based on atrophy rate.

The other disease data set HD-54 was selected as it describes a
small study with images from different scanner software versions,
where statistical power is relatively low. Fig. 12 (left and middle)
shows plots of percent change averages (and standard errors) for
thalamus, caudate and putamen in both hemispheres. Percent change
is computed with respect to the baseline volume here, where baseline
volume is taken from the linear fit within each subjects as a more
robust estimate. For the PHDfar we test difference from controls, for
PHDnear difference from PHDfar and for the HD difference from
PHDnear. Because of the large variability in the measurements, the
cross-sectional stream cannot distinguish well between the groups.
[LONG], however, is capable of differentiating PHDfar from controls
based on atrophy rates in the caudate and putamen and PHDfar
from PHDnear based on the left caudate. Caudate and putamen
are structures that are affected very early (in PHDfar more than
11 years from expected onset of symptoms) while other structures
such as the thalamus seem to be affected later in the disease and
show a faster atrophy rate in the HD group. In HD the small atrophy
rate in the caudate seem to indicate a floor effect (or difficulties
with the automatic segmentation as most of the caudate is lost).

To visualize group volume differences Fig. 12 (right) depicts the
mean volumes of thalamus, caudate and putamen at baseline (tp1)
after intracranial volume (ICV) normalization. Even though here we
analyze volume at a single time point, each structure's volume and
ICV are taken from the results obtained via longitudinal processing
and should therefore be more robust than independent processing.
Due to large between-subject variability in anatomical structures, it is
often not possible to distinguish groups simply based on structure
size (even after head size correction). In longitudinal studies, however,
the additional temporal information within each subject (atrophy rate)
is computed with respect to average or baseline structure size (i.e. per-
cent change) within each subject. This removes between subject vari-
ability and, at the same time, increases power to distinguish groups
based on the anatomical change in addition to size. For example the at-
rophy rate in the putamen differs significantly between controls and
pre-symptomatic subjects far from disease onset, while baseline puta-
men volume does not.

Conclusion

The robust subject template yields an initial unbiased estimate
of the location of anatomical structures in a longitudinal scheme.
We demonstrated that initializing processing of individual time
points with common information from the subject template im-
proves reliability significantly as compared to independent proces-
sing. Furthermore, our approach to treat all inputs the same
removes asymmetry induced processing bias. This is important as
the special treatment of a specific time point such as baseline, e.g.
to inform follow-up processing, induces bias even in the absence
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Fig. 11. Percent volume change per year with respect to baseline of the OA-136 dataset
(2 to 5 visits per subject) for both independent [CROSS] (top) and longitudinal [LONG]
(bottom) processing. [LONG] shows greater power to distinguish the two groups and
smaller error bars (higher precision).
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Fig. 12. Symmetric percent volume change per year of several subcortical structures. Left: [C
dle: [LONG] significant differences between pre-symptomatic (PHD far from onset) and con
malized) at baseline (tp1). While baseline volume distinguishes groups in several cases, th
cannot be detected in the baseline volumes.
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of resampling asymmetries. Moreover we avoid imposing regulari-
zation or temporal smoothness constraints to keep the necessary
flexibility for detecting large deviations. Therefore, in our frame-
work, the order of time points is not considered at all and individ-
ual segmentation and deformation procedures are allowed to
evolve freely. This reduces over-regularization and thus the risk of
consistently underestimating change.

We have shown, that our method significantly improves precision
of the automatically constructed segmentations with respect to vol-
ume and location, and of the cortical thickness measures. Thus, statis-
tical power is increased, i.e. the necessary number of subjects or time
points reduced (at same effect size and significance level). This may
have a profound clinical impact particularly in drug trials where
small effect sizes need to be detected or disease processes quantified
early in the course, when therapeutic intervention is still possible.
The presented methodology is capable of precisely and accurately
detecting differences as demonstrated in simulated hippocampal at-
rophy and in evaluating complex, subtle changes that occur in neuro-
degenerative disorders.

A common challenge of longitudinal analyses is change in scanner
hardware or software. Due to scanner drift and calibration, images
cannot be assumed to be sized exactly the same. Any change in pre-
processing can bias results and potentially void a study trying to
establish absolute measures such as the rate of change in a specific
disease. Group comparisons may still be possible, if both groups
underwent the same processing changes, but even then it is likely
that the processing change influences one group more than the
other and that influences are regional. To account for calibration ef-
fects, we include optional affine template creation into our frame-
work. However, potential image contrast changes cannot easily be
removed retrospectively. This is of course true for both longitudinal
and independent processing, where variability will be even higher.
A consistent change in input images, independent of the source, is
supposed to be detected by an accurate and precise analysis tool. Lon-
gitudinal methods may actually reveal these kinds of consistent ac-
quisition differences, because they are more sensitive and need less
subjects to detect them. It is therefore essential to control scanner
hardware and software or to model upgrades as potential shifts
when running a statistical analysis on the results.

Future work will include procedures to jointly estimate or opti-
mize results in all time points simultaneously without necessarily
relying on the subject template. In unbiased simultaneous proces-
sing memory usage is scaled at least linearly by the number of
time points (Gaussian classifiers scale with the square if full covari-
ance estimation is used), which implies that hardware requirements
may not be met by standard desktop computers. However, this is a
direction we intend to pursue. For example, a joint intensity
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normalization and bias correction can employ all the imaging data
across time to estimate a high SNR image at each time point while
retaining regions that display temporal change. It is also possible
to generate an unbiased initial estimate of the average surface loca-
tions for both the gray/white and the pial surfaces by minimizing
the distance to each of the individual cross-sectional surfaces direct-
ly. Furthermore, it is expected that variational approaches for the
thickness computation in each time point will improve reliability
compared to the current method, which estimates and averages
the shortest distance from the gray to white matter surface and
vice versa.

The presented longitudinal scheme is freely available in the soft-
ware package FreeSurfer at www.freesurfer.net and has been success-
fully applied in our lab and by others in various studies of e.g.
Huntington's, Alzheimer's disease and aging.
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Appendix A. Probabilistic fusion

For the following discussion we assume for each subject the N nor-
malized and skull stripped images {Ii} to be registered and resampled
to the common template space, together with their initial label maps
{Li}, i=1,…,N, where we use nearest neighbor interpolation. The
goal is to construct a fused segmentation ~Li for each time point con-
taining the label with the highest probability at each location based
on all inputs {Ii} and initial segmentations {Li}. This procedure is
designed for N≥3 time points, for N=2 it reduces to selecting the
label from the initial label map of the specific time point. Here we
just discuss one selected time point and call its image I without
Table A.3
Statistics based on test–retest data (14 subjects, two time points). Columns: mean and stan
ficient icc(2,1), standard deviation of the difference (tp2− tp1),standard deviation of the sy
sectional processing to show improvements of the longitudinal stream.

Volume stats. [LONG]:

Structure Mean 1 std 1 Mean 2 std 2

L corticalGM 192,866 20,512 190,918 20,157
R corticalGM 194,939 21,068 192,368 21,966
L thalamus 5680.7 616.4 5672.4 583.1
R thalamus 5733.6 544.5 5705.0 526.9
L caudate 3224.4 378.9 3197.7 393.1
R caudate 3333.0 440.2 3331.3 443.5
L putamen 4664.1 898.9 4694.7 865.4
R putamen 4534.5 701.4 4536.1 729.4
L pallidum 1632.2 219.4 1625.4 196.1
R pallidum 1442.9 205.8 1436.6 205.0
L hippocampus 3075.2 384.2 3089.6 390.2
R hippocampus 3173.1 421.8 3190.0 438.8
L amygdala 1142.8 150.0 1167.0 176.5
R amygdala 1168.9 185.7 1161.4 183.4
subscript, note that it is an element of the set {Ii} although we assume
it was generated from all inputs later:

~L ¼ argmax
L

p Lð jI; Li; Iif gÞ A:1

¼ argmax
L

p L; I; Li; Iif gð Þ A:2

¼ argmax
L

∏
x∈Ω

p L xð Þ; I xð Þ; Li; Iif gð Þ
� �

A:3

where Ω denotes the set of all voxels and assuming that the labels at
each voxel are conditionally independent from each other. This al-
lows us to work on each voxel separately. By assuming that the cur-
rent image I is generated with equal probability from the {Ii} and
dropping 1/N we obtain:

~L xð Þ ¼ argmax
l

p L xð Þ ¼ l; I xð Þ; Li; Iif gð Þ A:4

¼ argmax
l

XN
i¼1

p L xð Þ ¼ l; I xð Þ; Li; Iið Þ
 !

A:5

¼ argmax
l

XN
i¼1

p L xð Þ ¼ l; Lið Þp I xð Þ; Iið Þ
 !

A:6

where we further assumed I and L to be conditionally independent
(not meaning independent, see Sabuncu et al., 2010). We specify a
simple voting model for the label prior:

p L xð Þ ¼ l; Lið Þ ¼ 1 if Li xð Þ ¼ l
0 otherwise :

	
A:7

While for the image likelihood we choose a normal distribution
with stationary variance σ2:

p I xð Þ; Iið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp
− I xð Þ−Ii xð Þð Þ2

2σ2

 !
: A:8

The above procedure basically describes a kernel density estima-
tion with a Gauss kernel (Parzen window). Each initial label map
votes on the label based on the intensity difference to the current
image. With constant image likelihood (σ→∞) this reduces to major-
ity voting. The image likelihood that we use above can be seen as
temporal smoothing of the label maps. In the kernel density estima-
tion the free smoothing parameter σ is called the bandwidth and
dard deviation at both time points, correlation across time, intraclass correlation coef-
mmetrized percent change (diff/avg). The icc and std of SPC are reported also for cross-

[CROSS]:

corr icc std (diff) std (spc) icc std (spc)

0.987 0.983 3336.69 1.760 0.983 2.070
0.978 0.972 4571.14 2.449 0.971 2.825
0.979 0.979 128.03 2.153 0.873 4.861
0.951 0.953 167.89 2.841 0.841 4.810
0.982 0.980 74.55 2.208 0.967 2.558
0.993 0.994 51.56 1.551 0.971 3.056
0.985 0.985 155.35 3.808 0.951 6.048
0.991 0.991 98.15 2.266 0.962 3.536
0.943 0.941 73.99 4.372 0.823 7.320
0.948 0.951 65.96 4.534 0.861 8.158
0.958 0.960 112.07 3.583 0.922 4.537
0.981 0.981 85.14 2.781 0.964 3.352
0.923 0.907 69.06 5.801 0.776 9.810
0.933 0.937 67.48 5.967 0.860 7.954

http://www.freesurfer.net


5 i.e. sufficiently less than 180∘ away from each other to prevent the average from
becoming ill conditioned or even singular.

6 Q=WDVT=(WVT)(VDVT)=US and
ffiffiffiffiffiffiffiffiffiffi
QTQ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VDWTWDVT

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VDVTVDVT

p
¼ S

using VTV=WTW= I.
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Fig. A.13. Votes that need to agree on a different label to convince a time point to swap
at σ=3 for a given intensity difference.
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has been selected to be σ=3 here based on the possible intensity
values and noise level. This value is relative conservative, for example
it needs 5 time points that agree on a different label and have an in-
tensity difference of at most 5 out of 0…255 to convince a label to
switch over. For larger intensity differences this number rapidly
increases, see Fig. A.13.

Note that, as mentioned above, the fused segmentation ~L needs to
be constructed for each time point. It is not the final segmentation,
but is used only to initialize the segmentation algorithm in the longi-
tudinal processing. We presented the probabilistic approach above to
highlight what design choices have been made. Possible modifica-
tions are:

• to use a non rigid higher dimensional warp to align the images for
this purpose.

• to allow for different probabilities of the {Ii}, for example, to account
for distances in time and/or neighborhood intensities.

• to employ a more complex model for the label prior, e.g., based on
neighboring voxels or the signed distance transform.

However, since the fused segmentation is only an initialization,
the above approach is sufficient in that it allows flexibility of detect-
ing large change across time, as opposed to using the segmentation
of the template to initialize all time points.

Appendix B. Mean space

Here we discuss, how to compute the average location from a
set of N-1 rigid transformations (step 2 in Improved template
estimation section). For this a new coordinate system is defined
with its origin at the center of the random target image Ĩ with axes
aligned to the right, anterior, superior directions (RAS). The first
step is to find the location and orientation (translation and rotation)
of each of the other images in this space, so that the average location
can be computed.

A rigid transformation consists of a rotation and translation and is
usually written as φ x

→
� �

:¼ R x
→ þ t

→
, where R is a 3×3 rotation ma-

trix. R and t
→

are returned when registering image Ii to image Ĩ. Equiv-
alently the order can be reversed, so that the translation will be
executed before the rotation:

φ x
→
� �

¼ R x
→ þt ¼ R x

→ þR−1 t
→� �

: B:1

Note that the inverse of the rotationmatrix is simply the transpose
R−1=RT. The rotation remains the same, while the translation be-
comes vi

→
:¼ RT

i ti
→

(registering image i to the first via transform φi).
The − vi
→

directly give the translation offset of each image with re-
spect to image Ĩ (located at the origin). Therefore the average:

p
→
:¼ − 1

N

XN
i¼1

vi
→

B:2

marks the mean of all locations. For rotations different averages can
be defined (Moakher, 2002; Sharf et al., 2010). Since rotational differ-
ences are rather small, it will be sufficient to compute the projected
arithmetic mean. This is the usual arithmetic mean of 3×3 matrices,
orthogonally projected back to SO(3), the space of rotation matrices,
via a polar decomposition. To find the rotation from Ĩ to the average
position, the inverse rotations obtained from the registration above
are averaged:

Q ¼ 1
N

XN
i¼1

RT
i : B:3

Note that both sums run over all images, where the translation of Ĩ
with respect to itself is of course zero and the rotation matrix is iden-
tity. Since the matrix mean Q is not a rotation matrix in general, its
polar decomposition Q=US into an orthogonal rotation matrix U
and a symmetric matrix S needs to be computed. S is always unique

and given by S ¼
ffiffiffiffiffiffiffiffiffiffi
QTQ

q
. Because the head positions in the images

are sufficiently close to each other,5 Q is invertible and then U is
also unique. It can be computed through a singular value decomposi-
tion of Q=WDVT and is given6 by U=WVT.

Once the mean location p
→

and orientation U are determined, we

construct the transform φ̂ x
→
� �

:¼ U x
→ þ p

→
from image Ĩ to the aver-

age location. The other transforms of each image to the average loca-
tion are then created by composition φ̂i :¼ φ̂∘φi. All images are
averaged at that location and serve as high quality input to the intrin-
sic mean algorithm.

Appendix C. Simulated atrophy

In order to simulate atrophy in the hippocampus (see Robustness,
precision and accuracy section) we reduce the intensity of boundary
voxels adjacent to ventricle CSF. Let H denote the set of all hippocam-
pus voxels and B the subset of boundary voxels containing partial
ventricle, then we have Vhippo(B)=∑ x∈BVhippo(x) the sum of partial
hippocampus volumes for all voxels in B, and total hippocampal vol-
ume Vhippo(H). For atrophy rate p (here p=0.02) we compute the
boundary scaling factor as:

s ¼ 1−
Vhippo Hð Þp
Vhippo Bð Þ C:1

necessary for adjusting partial volume of boundary voxels to achieve
the desired volume reduction. For this we first estimate local mean
hippocampus intensity IH(x) and ventricle intensity IV(x) in a 153

box centered at x. Then we compute the partial hippocampal volume
at x

Vhippo xð Þ ¼ I xð Þ−IV xð Þ
IH xð Þ−IV xð Þ C:2

and update intensity according to

I xð Þ ¼ IH xð Þs Vhippo xð Þ þ IV xð Þ 1−s Vhippo xð Þ
� �

: C:3
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