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We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-
univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal
LME or ST-LME, builds on the flexible LME framework and exploits the spatial structure in image data. We
instantiated ST-LME for the analysis of cortical surfacemeasurements (e.g. thickness) computed by FreeSurfer,
a widely-used brain Magnetic Resonance Image (MRI) analysis software package. We validate the proposed
ST-LME method and provide a quantitative and objective empirical comparison with two popular alternative
methods, using two brain MRI datasets obtained from the Alzheimer's disease neuroimaging initiative (ADNI)
and Open Access Series of Imaging Studies (OASIS). Our experiments revealed that ST-LME offers a dramatic
gain in statistical power and repeatability of findings, while providing good control of the false positive rate.

© 2013 Elsevier Inc. All rights reserved.
Introduction

In a recent paper (Bernal-Rusiel et al., 2012), we advocated the use
of Linear Mixed Effects (LME) models (Fitzmaurice et al., 2011;
Verbeke and Molenberghs, 2000), a mature and versatile statistical
framework, for the analysis of longitudinal neuroimage (LNI) data.
As part of this prior manuscript, we implemented a toolkit of LME-
based methods suitable for analyzing univariate neuroimaging mea-
sures (e.g. hippocampal volume) and illustrated their utility on a
well-studied longitudinal dataset from the Alzheimer's Disease Neu-
roimaging Initiative (ADNI). These freely available tools facilitate ex-
ploratory data visualization, model specification, model selection,
parameter estimation, hypothesis testing, statistical power analysis,
and sample size estimation. Our experiments confirmed our theoreti-
cal expectations and demonstrated that LME offers superior specificity
and sensitivity over alternative methods, such as repeated measures
ANOVA and the cross-subject analysis of longitudinal change mea-
sures (e.g. atrophy rate). These advantages are mainly due to the
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LMEmethod's appropriate modeling of the covariance structure in se-
rial measurements and its ability to handle unbalanced longitudinal
data with missing data-points and imperfect timing.

The core goal of this follow-up manuscript is to extend the LME
framework to handle spatial LNI data and enable an image-wide
mass-univariate exploration of effects. The mass-univariate approach
is a widely used, powerful methodology for the identification and
characterization of regionally specific variation across the brain,
which is due to clinical, experimental, or biological conditions of inter-
est (Friston, 2007). This approach is exploratory and complementary
to hypothesis-driven univariate analyses of summary statistics from
a priori, focused regions of interest (ROIs); or of brain-wide measures,
such as total brain volume.

Despite the tremendous growth in LNI studies over the last decade,
e.g. (Asami et al., 2011; Blockx et al., 2011; Chetelat et al., 2005;
Davatzikos and Resnick, 2002; Desikan et al., 2011; Draganski et al.,
2004; Driscoll et al., 2011; Fjell et al., 2009; Fotenos et al., 2005;
Fouquet et al., 2009; Frings et al., 2011; Giedd et al., 1999; Hedman
et al., 2011; Ho et al., 2003; Holland et al., 2009, 2011; Hua et al.,
2009, 2010; Jack et al., 2008, 2009; Josephs et al., 2008; Kaladjian
et al., 2009; Kalkers et al., 2002; Ment et al., 2009; Misra et al.,
2009; Pantelis et al., 2003; Paviour et al., 2006; Resnick et al., 2010;
Sabuncu et al., 2011; Schuff et al., 2010; Schumann et al., 2010;
Sidtis et al., 2010; Sluimer et al., 2008, 2009; Sullivan et al., 2011;
Thambisetty et al., 2010, 2011; Whitwell et al., 2007, 2011), most
LNI studies have either focused on a small number of image mea-
surements via univariate analyses and/or utilized methods that are
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suboptimal for detecting longitudinal effects (Bernal-Rusiel et al.,
2012). The reduction in statistical power due to suboptimalmethodol-
ogy is particularly detrimental when exploring brain-wide associations
in a mass-univariate fashion. We believe the main reason behind the
underutilization of more powerful methods is that the relevant statis-
tical tools are not readily available in user-friendly image analysis
software environments (such as SPM (Friston, 2007; SPM, n.d), AFNI
(Cox, 1996), FSL (Smith et al., 2004), or FreeSurfer (Fischl, 2012)) for
the neuroimaging community to utilize.2

In recent years, several studies have employed dedicated longitu-
dinal models (e.g. LME models) for the voxel-level, mass-univariate
analysis of LNI data, e.g. (Bowman and Kilts, 2003; Chetelat et al.,
2005; Delaloye et al., 2011; Lau et al., 2008; Lerch et al., 2005; Li et
al., 2013; Shaw et al., 2008; Shinohara et al., 2011; Skup et al., 2012;
Zhang et al., 2009; Zipunnikov et al., 2011). Many of the methods
used in these studies suffer from at least one of the following two
drawbacks, both ofwhichwill be addressed in the presentmanuscript.
Firstly, model selection is commonly conducted for each voxel sepa-
rately. This procedure is typically based on a statistical test, such as
the likelihood ratio, and hence suffers from the multiple comparisons
problem, which is usually not accounted for. Secondly, voxel-level
models do not take advantage of the spatial structure in the data,
since they model the covariance components separately at each and
every voxel in the search volume. As a consequence, the estimators
are less efficient and statistical power is reduced.

In the present paper, we examine a spatial extension of the LME
framework for the mass-univariate analysis of longitudinal neuro-
image data. To our knowledge, there are only two recently published
statistical tools that are also suitable for performing the types of anal-
yses we consider in this paper (Li et al., 2013; Skup et al., 2012).
The present paper proposes a different strategy, which might be
more appropriate for longitudinal studies that are unbalanced. In the
Discussion, we provide a theoretical comparison of the proposed
approach with these alternative methods.

Spatiotemporal statistical models have been already proposed for
the analysis of time series data from functional neuroimaging studies.
Friston et al. (2002a, 2002b, 2005) present the theory and applications
for the hierarchical random effects models commonly used in the
analysis of multi-subject fMRI data and discuss both classical and
Bayesian inference perspectives. Other authors have adopted a fully
Bayesian approach. Gossl et al. (2004) and Woolrich et al. (2004)
model correlations between neighboring voxels within computational-
ly expensive Bayesian frameworks. Guo et al. (2008) propose a Bayesian
hierarchical (two-level) model for predicting post-treatment neural
activity from individual's baseline functional neuroimaging scans. In
more recent work, a similar Bayesian hierarchical model is extended
to capture spatial correlations both between intra-regional voxels and
between regions, where the regions of interest are obtained from an
anatomical parcellation (Derado et al., 2012). This model can also be
seen as an extension of the hierarchical model proposed by (Bowman
et al., 2008).

The above models, though useful for the analysis of time series
data, are not suitable for the analysis of LNI data for three main
reasons. Firstly, different from functional time series, LNI data are
typically highly unbalanced, i.e., the number of time-points and the
timing of scans can vary substantially between subjects. Secondly, in
LNI studies only a handful of longitudinal scans are usually available
per subject, which prevents the application of hierarchical random
effects models. Additionally, hierarchical models can force us to con-
sider more complex covariance models than necessary, which, in
2 A noteworthy exception is AFNI (Cox, 1996. AFNI: software for analysis and visual-
ization of functional magnetic resonance neuroimages. Computers and Biomedical Re-
search 29, 162-173.), a functional MRI analysis toolkit, which provides LME-based
tools.
turn, affect the precision of the parameters estimates and increase
the required computation time. This is because every time-varying
covariate necessary to accomplish a sufficiently complex model for
the mean must be considered as a random effect and therefore
included in the model for the covariance (Fitzmaurice et al., 2011).
Finally, certain modeling assumptions made for functional time series
data are unrealistic for LNI data. For example, in the implementation
of the Statistical Parametric Mapping software (SPM), all “responsive”
voxels across the brain are assumed to share the same temporal
correlation matrix (Friston et al., 2005).

In this paper, we introduce a novel method for themass-univariate
analysis of LNI data based on a spatiotemporal linear mixed effects
(ST-LME) modeling strategy. In the proposed approach, we take
advantage of the mass-univariate setting, where the analysis is
performed at an enormous number of spatial image locations (voxels
or mesh vertices), and pool the temporal covariance structure across
neighboring locations. In comparison with a voxel/vertex-wise LME
approach (V-LME), the proposed strategy offers a significant improve-
ment in the precision of parameter estimates and degrees of statistical
freedom, which in turn yields a boost in statistical power. Our goal
here is to provide the theoretical details and an empirical validation
of the proposed computational tools for themass-univariate statistical
analysis of LNI data. These tools will be made freely available in
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/fswiki) (Dale et al.,
1999; Fischl et al., 1999a; Fischl et al., 1999b) as a natural complement
to its new longitudinal image-processing pipeline (Reuter and Fischl,
2011; Reuter et al., 2010, 2012). In our experiments, we analyzed lon-
gitudinal cortical thickness measurements obtained from the ADNI
and OASIS (Marcus et al., 2007, 2010) datasets to validate ST-LME and
carry out an empirical comparison with voxel/vertex-wise methods,
such as the V-LME and the widely used cross-subject analysis of longi-
tudinal change measurements.

Material and methods

Voxel/vertex-wise linear mixed effects (V-LME) models

One basic approach for the mass-univariate analysis of LNI data is
to apply the linear mixed effects (LME) model at each spatial location
(voxel or mesh vertex) independently. We will call this approach,
which has been used in prior studies, (e.g. Bowman and Kilts, 2003;
Chetelat et al., 2005; Delaloye et al., 2011; Lau et al., 2008; Lerch
et al., 2005; Shaw et al., 2008), voxel- or vertex-wise LME (V-LME).

The LME approach offers a parsimonious strategy to jointly model
the mean and covariance structure in longitudinal data (Fitzmaurice
et al., 2011; Verbeke and Molenberghs, 2000). The central idea in
LME is to allow a subset of the regression parameters to vary randomly
across subjects. Hence, the mean trajectory is modeled as a combina-
tion of population-level “fixed” effects and subject-specific “random”

effects.
Let Yi be the ni × 1 vector of serial univariate measurements for

subject i, where ni is the subject-specific number of serial measure-
ments; Xi denote the ni × p subject design matrix for the fixed effects,
β = (β1,β2, …,βp)T denote a p × 1 vector of unknown fixed effects
regression coefficients, Zi be the ni × q, q ≤ p design matrix for the
random effects,3 bi = (bi1,bi2, …,biq)T be a q × 1 vector of random
effects and ei ¼ ei1; ei2;…; eini

� �T be a ni × 1 vector of independent
and identically distributed measurement errors. The LME model can
then be expressed as:

Yi ¼ Xiβ þ Zibi þ ei ð1Þ
3 Random effects typically include an intercept and/or time-varying variables.

http://surfer.nmr.mgh.harvard.edu/fswiki


4 By homogeneous, we mean the covariance structure of subject-level serial measure-
ments within each region can be considered to have a similar temporal component and
a relatively smooth spatial component. We note that we are not assuming that the effect
of interest is homogeneouswithin each region. Aswediscuss below the effect of interest is
not used to obtain the segmentation, thus we avoid the issue of “double-dipping.” I.e., the
proposed two-step strategy (segmentation + model fitting/hypothesis testing) is not
coupled in a way that would bias the statistical results.
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Note Zi links the vector of random effects bi to Yi and its columns are
a subset of the columns of Xi. Then, the following usual distributional as-
sumptions are made:

bi eN 0;Dð Þ; ei eN 0;σ2Ini

� �
;

where N(0,D) denotes a zero mean (q dimensional) multivariate
Gaussian with covariance matrix D; Ini denotes the ni × ni identity
matrix; and b1, …, bm, e1, …, em are independent with m being the
number of subjects in the study. The components of bi reflect how
the subset of regression parameters for the ith subject deviate from
those of the population. The components of ei represent random
sampling or measurement errors.

The LME model provides a parsimonious representation for the
population mean:

E Yið Þ ¼ Xiβ:

Note that, as in any other regression problem, the choice of inde-
pendent variables needs to be made on a subject-matter basis. The
contribution of time-varying variables will determine the mean tem-
poral trajectory. One simple strategy is to assume the trajectory is lin-
ear, since longitudinal studies with a limited duration are likely to
only be capable of exposing simple trends. Alternative models can
be chosen based on domain specific knowledge and/or visual inspec-
tion of data.

The non-diagonal temporal covariance matrix between the serial
measurements of the ith subject is,

Cov Yið Þ ¼ Σi ¼ Cov Zibið Þ þ Cov eið Þ ¼ ZiDZ
T
i þ σ2Ini ð2Þ

the structure of which is determined by the choice of random effects
(Bernal-Rusiel et al., 2012). Finally, the joint distribution of the uni-
variate serial measurements is:

Yi eN Xiβ;Σið Þ ð3Þ

Unbiased estimates of the covariance components D̂ and σ̂ can be
obtained by numerically maximizing the restricted log-likelihood
function (Verbeke and Molenberghs, 2000). Finally, hypothesis test-
ing can be conducted based on the Satterthwaite-based approxima-
tion of a scaled F-statistic (Kenward and Roger, 1997).

Spatiotemporal linear mixed effects (ST-LME) models

Related prior work
Spatiotemporal models that pool the temporal covariance struc-

ture across spatial locations have been successfully used in the func-
tional neuroimaging literature (Bowman, 2007; Bowman et al.,
2008; Derado et al., 2012; Friston et al., 2005; Gossl et al., 2004; Guo
et al., 2008;Woolrich et al., 2004). In practice, it has been demonstrat-
ed that this approach can increase the precision of parameter esti-
mates. However, in order to efficiently pool parameter estimates
over many locations it is necessary to model the spatial covariance
among those locations. For example, the SPM strategy (Friston et al.,
2005) pools over “responsive” voxels (a responsive voxel is defined
as surviving an F-test for any effect of interest at an uncorrected
p-value threshold of 0.001). Here, responsive voxels can be scattered
across the entire brain and their temporal covariance structure is sim-
ply assumed to be a scaled version of a global temporal covariancema-
trix. Furthermore, inter-voxel correlations are ignored, i.e., assumed to
be zero. This model is not suitable for LNI data mainly for two reasons.
Firstly, the temporal covariance structure of longitudinal measure-
ments is likely to be quite different between distant regions of the
brain, reflecting the fact that different brain regions are affected at
different stages in various disease processes. Secondly, inter-voxel
correlations are likely to be quite high between proximal points,
since structural change is rarely punctate, but rather affects an entire
structure or region of the cortex.

An interesting alternative strategy was developed in (Bowman,
2007), where a spatiotemporal model is used to estimate temporal
and spatial correlations inside a given region of interest (ROI). The
spatial covariance structure is captured through a parametric matrix
that explicitly models the dependency between the error terms asso-
ciated with each voxel as a function of the distance between the
voxels. Inspired by this approach, we developed the following spatio-
temporal LME (ST-LME) modeling strategy for LNI data.

The ST-LME model
Our basic assumption is that the temporal covariance structure of

the LMEmodel is shared across points (voxels or mesh vertices) within
a homogenous region of interest (ROI). Furthermore, there is a simple
parametric covariance structure that models the spatial dependency
between points. With these assumptions, there are two questions to
consider:

• How to divide up the image into homogenous regions4?
• How to model the spatial dependency?

First, let us address the second question and assume we are given
a parcellation of the image into homogeneous regions. Henceforth,
we will focus on a single one of these regions and each one of these
regions will be modeled separately.

Let g denote the region we are considering and vg be the number of
voxels or vertices in this region. Let Yig denote the (nivg) × 1 vector of
measurements for region g in subject i, where ni is the subject-specific
number of serial measurements. Yig is composed of stacking up length

ni vectors of serial measurements from vg voxels. I.e., Yig ¼
Yig1
Yig2

⋮
Yigvg

0BB@
1CCA,

where Yigv is the vector of ni serial measurements at the v th voxel of
region g in subject i. We model the covariance of Yig as

Cov Yig

� �
¼ Wig ¼ Gg⊗Σig ¼

Gg11Σig Gg12Σig ⋯ Gg1vgΣig

Gg21Σig Gg22Σig ⋯ Gg2vgΣig

⋮ ⋮ ⋱ ⋮
Ggvg1Σig Ggvg2Σig ⋯ Ggvgvg

Σig

0BBB@
1CCCA;

where ⊗ denotes the Kronecker tensor product, Σig ¼ ZT
i DgZi þ σ2

g Ini

(see Eq. (2)) is the region- and subject-specific LME temporal covari-
ance matrix, and Gg is a vg × vg matrix that models the spatial correla-
tion structure. One particular example for Gg that we found was
empirically useful is:

Gg ¼
1 e−agd12−bgd

2
12 ⋯ e−agd1vg−bgd

2
1vg

e−agd21−bgd
2
21 1 ⋯ e−agd2vg−bgd

2
2vg

⋮ ⋮ ⋱ ⋮
e−agdvg1−bgd

2
vg1 e−agdvg2−bgd

2
vg2 ⋯ 1

0BBB@
1CCCA ð4Þ

where ag, bg ≥ 0 are unknown model parameters, and djk ≥ 0 repre-
sents the value of some distance metric (for example Euclidean or
surface-based geodesic distance) between voxels (vertices) j and k
in region g. In the Supplementary material, we provide a comparison



5 As we show in the following section, there are closed-form formulae for the OLS
parameter estimates and the residuals can thus be computed efficiently.
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of alternative spatial correlation matrices suggested by (Bowman,
2007). Note that the “Gaussian” and “exponential” models of Bowman
(2007) correspond to special cases of Eq. (4) with ag = 0 and bg = 0,
respectively. Our results indicate the model of Eq. (4) provides a good
fit to structural MRI-derived measurements such as cortical thickness
(as reflected in lower AIC values) and offers good control for type 1
errors.

Hence the joint distribution of the serial measurements within
region g is:

Yig eN Xigβg;Wig

� �
;

where Xig ¼ Ivg⊗Xi, Ivg denotes the vg × vg identity matrix, and the
p × 1 vectors of fixed effects for each location j = 1, …, vg, βgj, are

stacked in the vgp × 1 vector βg ¼
βg1
βg2
⋮

βgvg

0BB@
1CCA. We use restricted maxi-

mum likelihood (REML) to estimate the model parameters associated
with region g, i.e., Dg, σg, ag, and bg by maximizing:

l ¼ 1
2

Xm
i¼1

log W−1
ig

��� ���−1
2

Xm
i¼1

yig−Xigβ̂g

� �T
W−1

ig yig−Xigβ̂g

� �
−1

2
log

Xm
i¼1

XT
igW

−1
ig Xig

�����
�����;

ð5Þ

where β̂g is the generalized least squares estimator;

β̂g ¼
Xm
i¼1

XT
igŴ

−1
ig Xig

 !−1Xm
i¼1

XT
igŴ

−1
ig yig ð6Þ

yig is the realization of the random vector Yig and Ŵ ig is the REML es-

timate ofWig, which is a function of D̂g , σ̂ g , âg and b̂g . Note that we are
estimating a parsimonious model for the spatiotemporal covariance
inside homogeneous regions as opposed to the voxel- or vertex-wise

approach that would require separate estimates D̂gj and σ̂ gj, j = 1,
…, vg, for every voxel/vertex in the region. In addition, the spatiotem-
poral model accounts for spatial correlations in the data that are
neglected by the voxel-wise approach. In the Supplementarymaterial,
we give the formulae for the derivatives and expected information
matrix that can be used in a Fisher's scoring algorithm to estimate
the model parameters based on maximizing Eq. (5).

Finally, a Satterthwaite-based approximation can be used to com-
pute p-values for the null hypothesis at each voxel/vertex using

the estimates of the temporal parameters D̂g , σ̂ g , β̂gj, j = 1, …, vg
(Kenward and Roger, 1997). This approach utilizes an appropriate
strategy to compute the precision (or equivalently the covariance,

CovKR β̂gj

� �
) of the parameter estimates in the small sample setting.

Since the spatiotemporal model pools over locations in estimating
themodel parameters, in practice, we expect the precision of these es-
timates to be much higher than an approach that does not utilize the
spatial structure of the image. As our experiments demonstrate, this
increase in the precision of estimates and the increase in the statistic's
degrees of freedom translate into a boost in statistical power. We em-
phasize that in the ST-LME approach, we conduct a separate hypothesis
test at each vertex (see Supplementary material for details). Hence the
number of conducted tests and themultiple comparisons correction is
exactly the same as a vertex-wise analysis, such as V-LME.

Segmenting the image into localized homogeneous regions
Above, we assumed that we were given a parcellation of the image

into homogeneous (in terms of the spatiotemporal covariance struc-
ture) regions. In each of these regions, we assumed that the temporal
covariance structure is shared across voxels or vertices. Now, let's
present an algorithm to automatically identify such a parcellation
from the data. In doing so, we will assume we have approximate esti-
mates of the temporal covariance components at each location across
the brain. In the following section, we will describe an approach to
obtain these approximate estimates, which are used as vertex- or
voxel-wise attribute vectors for the segmentation.

The segmentation algorithm we propose to use is a data-driven,
region-basedmethod presented in Gonzales et al. (2002). Let R denote
the entire image domain (the entire set of voxels/vertices). Our goal is
to partition R into r homogeneous regions, R1, R2,…, Rr, such that (note
that r is not pre-determined)

1. ∪
r

i¼1
Ri ¼ R

2. Ri is a connected region, ∀ i = 1, 2, …, r
3. Ri ∩ Rj = ∅, for all i and j, i ≠ j
4. H(Ri) = true, for ∀ i = 1, 2, …, r
5. H(Ri ∪ Rj) = false for i ≠ j

Here H(Ri) is a logical condition of homogeneity defined over the
locations in Ri, and ∅ is the empty region.

The segmentation algorithm consists of two stages. In the first
stage, the entire image R is recursively divided up into a large number
of small homogeneous regions, until all the resultant regions Ri satisfy
H(Ri) =true. That is, at any state of the splitting process, if a generated
region is not homogeneous it is further split into smaller sub-regions
until all satisfy the homogeneity criteria. These sub-regions are then
combined in the second stage using a region growing strategy,
where neighboring regions are recursively fused if the resulting region
is still homogeneous, i.e., H(Ri) = true, and until no two regions can
be combined.

In our particular application we allow H(Ri) = true only when
the following two criteria hold for region Ri (k is a pre-defined
parameter):

i) More than 95% of the region vertices have an attribute entry that is
less than k standard deviations away from the region mean.

ii) The correlation among the ordinary least squares5 (OLS) residuals
within Ri is greater than 0.5. This conservative threshold ensures
that correlations among the residuals decay monotonically with
distance inside region Ri and therefore can be appropriately
modeled by the spatial correlation model of Eq. (4) (see Supple-
mentary material for a more detailed discussion).

The above homogeneity criteria aim to ensure the validity of the
modeling assumptions of the subsequent spatiotemporal model with-
in each region Ri. The parameter k determines how similar the covari-
ance components within a region should be to assume that their true
values are the same. A relatively large k (e.g. k = 2.5) will yield larger
regions, where the statistical precision of the parameter estimates will
be high. Yet these estimates might be biased, which would in turn re-
duce the accuracy of the model. Setting k = 0 will reduce ST-LME to
V-LME since each vertex will effectively be considered as a separate
region. In the Supplementary material, we present a sensitivity analy-
sis that reveals the effect of k on the statistical inference. In general,
higher values of k translate to more statistical power; but this increase
in efficiency comes at a cost of increased type I error. Based on our
experiments we recommend setting k between 1 and 2 (our default
setting is 2), since empirically we observe that with this setting we
can control the type I error, while achieving high sensitivity.

The splitting step of the segmentation algorithm can be instantiated
in many different ways. For example, in the case of Euclidean images a
region can be recursively split into quadrants (Gonzales et al., 2002).
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For the surface-based analysis, we employed the spherical coordinate
system that provides a convenient representation of each subject's
individual surface. Here, for any given region (patch on the sphere)
we computed the average 2D spherical coordinates (φ,ϕ) of its
elements (i.e., the surface centroid) and classified any point within
the region as being in one of four possible quadrants with respect to
the centroid.

Initial estimates of vertex-wise covariance parameters
In the previous section, we described a procedure for obtaining a

segmentation of the image into homogeneous regions with similar
covariance component estimates. Here, we provide formulae for
vertex-wise estimates of the covariance parameters. These are based
on ordinary least squares (OLS) estimates for the mixed-effects
model, and are given in Laird et al. (1987).

β̂o ¼
Xm
i¼1

XT
i Xi

 !−1Xm
i¼1

XT
i yi

b̂i ¼ Z−
i yi−Xiβ̂0

� �

σ2
0 ¼

Xm
i¼1

yTi yi−β̂T
0

Xm
i¼1

XT
i yi−

Xm
i¼1

b̂
T
i Z

T
i yi−Xiβ̂o

� � !

=
Xm
i¼1

ni

 !
− m−1ð Þq−p

 ! ð7Þ

D̂0 ¼
Xm
i¼1

b̂ib̂
T
i

.
m−σ̂ 2

o

Xm
i¼1

ZT
i Zi

� �−.
m ð8Þ

where q, p and ni are as defined in the Section Voxel/vertex-wise linear
mixed effects (V-LME) models and M− indicates the left generalized
inverse ofmatrixM. Here, D̂0 should be assessed to ensure it is positive
semi-definite.

Finally, some fast expectationmaximization iterations, as detailed in
Laird et al. (1987), can be optionally applied to the above approxima-
tions in order to obtain more accurate parameter estimates (so that
they vary more smoothly over space and yield a parcellation with a
smaller number of regions). Once again, we emphasize that the attri-
butes used for the segmentation step do not depend on the hypothesis
tests (or their corresponding contrast matrices) that would follow the
parcellation step.

Once the parcellation step is complete, we average the parameter
estimates within each region to be used as an initialization for the
iterative REML procedure. We also initialized the spatial parameter
a as 0.01 mm and b as 0.05 mm, which were further optimized in
the REML procedure.

The data

In our experiments, we analyzed longitudinal brain MRI data
(T1-weighted, 1.5 Tesla) from the Alzheimer Disease Neuroimaging
Table 1
Number and timing of scans per time point by clinical group.

Time point HC Stable MCI

Baseline 210 227
Year 0.5 (month 6) 197 194
Year 1 183 177
Year 1.5 0 153
Year 2 129 108
Year 3 115 68
Year 4 11 3
Total 845 930

Time from baseline (in years) is in mean ± standard deviation; Ranges are listed in square
Initiative (ADNI). We further utilized brainMRI data from the longitu-
dinal OASIS database in our supplementary analyses for additional
validation (see Supplementary material). All MRI scans were auto-
matically processed with FreeSurfer (version 5.1.0, http://surfer.nmr.
mgh.harvard.edu, including its new longitudinal processing pipeline
(http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing)
(Reuter and Fischl, 2011; Reuter et al., 2010, 2012)).

FreeSurfer's automatic processing steps include the computation
of the subject's cortical surface and thickness measurements across
the cortical mantle. These measurements are further spatially nor-
malized to a standard atlas space, which can be sampled onto a
common spherical mesh.

Longitudinal ADNI
There were four clinical groups in the longitudinal ADNI sample

we analyzed. These were as follows: (1) stable healthy controls
(HC), who were clinically healthy throughout the study (N = 210,
75.9 ± 5 years, 48.1% female); (2) stable subjects with Mild Cogni-
tive Impairment (sMCI), who were categorized as MCI at baseline
and remained so throughout the study (N = 227, 74.8 ± 7.7 years,
33.5% female); (3) converter MCIs (cMCI), who were suffering
from MCI at baseline and progressed to dementia during follow-up
(N = 166, 74.7 ± 7.1 years, 38.6% female); and (4) AD patients,
who were diagnosed with dementia of the Alzheimer type at base-
line (N = 188, 75.2 ± 7.5 years, 47.3% female). Table 1 provides a
summary of the longitudinal characteristics of the analyzed sample.

In our ADNI experiments, we analyzed longitudinal cortical
thickness data across the entire cortex, since AD has been shown to
be strongly associated with widely distributed cortical thinning
(Dickerson et al., 2009; Lerch et al., 2005). Spatial cortical thickness
maps were computed automatically by FreeSurfer for each subject
time point, which were then transferred onto a common template
via a nonlinear surface based registration procedure (Fischl and Dale,
2000; Fischl et al., 1999a, 1999b). Finally, every thickness map was
smoothed by applying an iterative nearest neighbor averaging proce-
dure that approximates Gaussian kernel smoothing on the high reso-
lution surface of FreeSurfer's fsaverage template subject (Han et al.,
2006). Note that the optimal extent (full-width at half max, or
FWHM) of smoothing depends on the sample size, the effect size,
the spatial extent of the effect and the type of multiple comparison
correction (Bernal-Rusiel et al., 2010). Based on our prior experience
with these data, we decided to use FWHM = 15 mm for the experi-
ments where we analyzed relatively small cohorts (e.g., 2 N = 20–50),
and FWHM = 8 mm for the analysis of the entire ADNI dataset.

LME-based statistical analyses

Two important choices need to be made in the LME-based analysis
of longitudinal data: the specification of time-varying independent
variables that model the mean temporal trajectory, and the selection
of (intercept and/or time-varying) independent variables that will de-
termine the covariance structure. In themass-univariate setting, these
model specification/selection questions are particularly challenging
Converter MCI AD Time from baseline

166 188 0
161 166 0.58 ± 0.07 [0.21–0.94]
153 150 1.08 ± 0.07 [0.68–1.38]
136 0 1.59 ± 0.08 [1.26–1.92]
106 96 2.09 ± 0.10 [1.58–2.88]
70 0 3.09 ± 0.09 [2.52–3.45]
10 0 4.12 ± 0.09 [3.98–4.38]

802 600

brackets.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing


6 Although this issue can incidentally be addressed with more appropriate methods
like weigthed least squares, we are not aware of any prior neuroimaging study that
does this.
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due to the large number of tests that need to be conducted. In all our
analyses, we employed a powerful two-stage adaptive False Discovery
Rate (FDR) procedure to control for multiple comparisons at q = 0.05
(Benjamini et al., 2006).

Based on our previous analyses of the ADNI data (Bernal-Rusiel
et al., 2012), we expected a clinical group-specific linear trajectory
to be an appropriate model for Alzheimer-associated cortical thinning
during the follow-up period. However, in order to account for any
possible non-linearity we performed a model selection procedure
starting with a model that was quadratic in time and included the
following independent variables as fixed effects: (scan) time (from
baseline), time squared, clinical group membership (HC was the refer-
ence group and there were indicator variables for all remaining
groups. E.g., for the sMCI indicator, the value was one if the subject
was clinically categorized as sMCI and zero otherwise), the interac-
tions between clinical group indicators with time and with time
squared, baseline age, sex, APOE genotype status (one if e4 carrier
and zero if not), the interaction between APOE genotype status and
time (note that this variable was included based on the evidence
that e4 accelerates atrophy during the prodromal phases of AD (Jack
et al., 2008)), and education (in years). Random effects were then de-
termined via a vertex-wise likelihood ratio test, where nested models
were compared based on a chi-square mixture statistic (Bernal-Rusiel
et al., 2012; Fitzmaurice et al., 2011). After correcting for multiple
comparisons, over 80% of the cortex vertices included both the inter-
cept and time, and not time squared, as the optimal set of random
effects. Hence, these two random effects were included in the final
model for all remaining analyses and time squared (the quadratic
term) was not included as a random effect. We then tested the null
hypothesis of no group differences in the quadratic term (i.e., the co-
efficient of the “time squared” fixed effect) and no vertex exhibited a
statistically significant association after multiple comparisons correc-
tion. Therefore, we dropped the quadratic term from the model. The
final model was thus consistent with our prior results: a linear trajec-
tory with two random effects: intercept and time (Bernal-Rusiel et al.,
2012).

In the ST-LME method, we applied five expectation maximization
iterations to improve the initial vertex-wise estimates of covariance
components that were used as features in the segmentation. We
then used the spherical surface (called ?h.sphere in FreeSurfer) to
segment the brain into homogeneous regions of similar covariance
estimates, with the parameter value set to k = 2. This yielded about
12,000 regions per hemisphere (with a maximum region size of 83
vertices) from an approximate total of 149,000 vertices (see Supple-
mentary Fig. S1 for a segmentation example). We used FreeSurfer's
spherical surface to compute the distances in the spatial correlation
matrix of Eq. (4).

In general, longitudinal studies are conducted to assess group
differences between the trajectories of variables of interest. Therefore,
we constrained our analyses to the association between the group-
time interaction (i.e., group-specific atrophy rate) and cortical thickness.

An alternative longitudinal analysis method

A popular method to analyze LNI data, e.g. (Fotenos et al., 2005;
Fouquet et al., 2009; Frings et al., 2011; Hedman et al., 2011; Hua
et al., 2009, 2010; Jack et al., 2009; Josephs et al., 2008; Kalkers et
al., 2002; Kasai et al., 2003; Martensson et al., 2012; Paviour et al.,
2006; Rosas et al., 2011; Sabuncu et al., 2011; Sluimer et al., 2008;
Wenger et al., 2011; Whitwell et al., 2007; Wilde et al., 2012), em-
ploys subject-level summary measures (e.g. the annualized difference
between two time-points, the slope of a regression line, or metrics
from longitudinal deformation fields), which are computed from the
sequence of repeated measures for each individual. Standard para-
metric or non-parametric statistical methods can then be utilized to
perform a cross-subject analysis of these summary measures. From
a theoretical standpoint, such an approach is usually not appropriate
for unbalanced data, since summary measures will not be identically
distributed (e.g., will have a variance that depends on the temporal
sampling6) violating a fundamental assumption made by standard
statistical methods. Furthermore, as our experiments demonstrate,
there can be a significant loss in statistical power due to ignoring
the correlation among the repeated measures and omitting subjects
with a single time-point.

Results

Comparing the ST-LME approach with two alternative methods

In our first experiment, our goal was to provide an objective com-
parison between three competing longitudinal mass-univariate anal-
ysis methods: the proposed ST-LME approach, the V-LMEmethod and
the cross-subject analysis of thickness change, i.e., rates of cortical
thinning estimated at each spatial location (vertex) and for each indi-
vidual. For the third method (X-Slope), we computed the thinning
rate at each vertex of each subject as the slope of the line that fits
the corresponding serial measurements best (in the least square
sense), similar to Martensson et al. (2012), Rosas et al. (2011),
Sabuncu et al. (2011), Wenger et al. (2011), and Wilde et al. (2012).
Hence subjects with only a single time-point were discarded from
the analysis. The slope estimates were then submitted to a General
Linear Model (GLM) based cross-subject analysis to assess the differ-
ence between groups. The independent variables in this GLM were
the same as the “fixed effect” variables used in the LME-based analy-
ses (i.e., the first two methods), with the exception of time, which
was not entered into the GLM. We note that for the ST-LME analyses,
the segmentation step was run on each sample independently. Thus
the ST-LME results reflect the variability in the segmentation step as
well. The surface FWHM used for smoothing the thickness data for
this analysis was 15 mm. For computational efficiency, we ran the
following analyses on the left hemisphere of fsaverage6, which is a
lower resolution version of fsaverage (FreeSurfer's average template
surface) and has about 35 k vertices.

To assess the statistical power offered by the three analysis
methods, we used an empirical strategy inspired by (Thirion et al.,
2007), where we randomly drew subsets of HC and AD subjects
from the entire sample and conducted group comparison analyses
of thinning across the entire cortex on these subsets. The main reason
we chose to focus on AD and HC subjects was the known significant
and widespread difference in cortical thinning rates between these
groups (Dickerson et al., 2009), which are also revealed in the results
presented in the next section. The dramatic extent of the group differ-
ence enabled us to explore the statistical power offered by an analysis
method based on pseudo-independent subsamples of variable sizes
(with N = 10, 15, 20 and 25 per group) randomly drawn from the
entire ADNI sample.

To obtain each sample for the comparisons (with N subjects per
group), we randomly selected two sets of independent AD + HC
samples, (i.e., two independent samples of 2 N). There was no overlap
between the two independent samples and each sample contained the
same number of AD and HC subjects. We repeated this procedure 400
times to obtain 400 random pairs of independent AD + HC samples.
In addition, for each of the 400 pairs of AD + HC samples we built a
new sample of the same size by using only the corresponding HC
subjects, yielding 400 HC + HC samples (Note that therewas no over-
lap between the two HC groups). The HC + HC samples served to
quantify the control for specificity under the null hypothesis, since
on average one would not expect to observe a difference in cortical



Table 2
Empirical FWE rates for three longitudinal mass-univariate analysis methods. These FWE
rates were computed at the sample-level based on CN + CN samples (2 N = 30), where
no group differences were expected. X-Slope: vertex-wise cross-subject analysis of corti-
cal thinning rates estimated by fitting a line to serial measurements; V-LME: vertex-wise
application of the LME approach to longitudinal thickness data; ST-LME: the proposed
spatiotemporal LME modeling method applied to longitudinal thickness data.

FDR q-value 0.01 0.05 0.10 0.15 0.20

X-Slope 0.00 0.01 0.02 0.03 0.04
V-LME 0.00 0.00 0.00 0.00 0.00
ST-LME 0.01 0.05 0.07 0.10 0.12

Fig. 2. Statistical power as a function of sample size (2 N) with FDR q-value = 0.05.
See caption of Fig. 1 for further details.
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thinning rates between two arbitrary HC groups. The AD + HC
samples, on the other hand, served to quantify statistical sensitivity
and repeatability.

For each sample (whether AD + HC or HC + HC), we used the
three aforementioned methods to compute significance maps for
the two-group comparison of longitudinal cortical thinning. We used
the two-stage adaptive FDR procedure with an array of q-values
(Benjamini et al., 2006) to control for multiple comparisons. We em-
phasize that all three methods had to go under the same FDR correc-
tion procedure for the same number of tests. Note that although
ST-LME fits a model in each segmentation region separately and the
number of regions can vary across samples, the number of conducted
statistical tests is equal to the number of vertices. For a detailed discus-
sion of this issue, please refer to the Supplementary material.

Firstly, we used the HC + HC samples to assess the family-wise
error (FWE) rate. We computed the FWE rate at the sample-level as
the fraction of instances (out of the 400) where the statistical method
falsely “detected” a group difference at one ormore vertices for a given
FDR q-value. Note that under the null hypothesis, the FDR q-value is
theoretically equal to the FWE p-value. Our results illustrate that all
three methods provide very good control of type I error rate, with
V-LME being the most conservative among the three (see Table 2).

Secondly, we employed the AD + HC samples to quantify sensitiv-
ity and repeatability. We computed the statistical power (sensitivity)
at the sample-level as the fraction of instances (out of the 400 × 2 =
800) where the statistical method detected some group difference at a
Fig. 1. Empirical sensitivity (statistical power) as a function of FDR q-value on AD + HC
sub-samples with 2 N = 30, randomly drawn from the complete ADNI data (800 ran-
dom sub-samples). Sensitivity is quantified as the fraction of instances, where the cor-
responding statistical method detected some group difference at a given FDR q-value.
X-Slope: vertex-wise cross-subject analysis of cortical thinning rates estimated by
fitting a line to serial measurements; V-LME: vertex-wise application of the LME
approach to longitudinal thickness data; ST-LME: the proposed spatiotemporal LME
modeling method applied to longitudinal thickness data.
given FDR q-value (see Fig. 1). We further computed the statistical
power as a function of the sample size (2 N) for a fixed FDR q-value
of 0.05 (see Fig. 2). Next, we assessed repeatability via the overlap
area between the two independent AD + HC samples. Fig. 3 shows
the means and standard errors across the 400 random draws over a
range of FDR q-values. Fig. 4 quantifies repeatability as a function of
sample sizewith fixed FDR q-value = 0.05. These results demonstrate
that ST-LME offers superior sensitivity and repeatability over the
benchmark methods considered here. However, we note that the
difference between the statistical power offered by ST-LME and
V-LME tends to decrease with increasing sample size and more liberal
q-value thresholds.

Finally, we conducted a sensitivity analysis of the ST-LME results to
assess the effect of varying the segmentation parameter k. These re-
sults, presented in the Supplementary Material, reveal that the statis-
tical power, repeatability and type I error control offered by ST-LME
are influenced by the segmentation step, and in particular by the size
Fig. 3. Repeatability quantified as the agreement (area overlap) of the detected regions
between two independent samples (400 independent AD + HC sample pairs of size
2 N = 30) as a function of FDR q-value. Error bars show standard error of the mean.
See caption of Fig. 1 for legend.



Fig. 4. Repeatability quantified as the agreement (area overlap) of thedetected regions be-
tween two independent samples as a function of sample size (with FDR q-value = 0.05).
See caption of Fig. 3 for further details.
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and number of the segmentation regions. In general, as k is increased,
the segmentation step outputs larger regions, which in turn can boost
statistical power. However, when these regions are too big (e.g., when
k = 2.5) ST-LME becomes prone to type I errors, because the model's
assumption that the temporal covariance structure is the same across
the vertices in each region is likely to be violated. Thus, in general we
recommend k to be set between 1 and 2.
Fig. 5. Uncorrected statistical significance – negative log10(p-value) – maps comparing lo
(from the entire ADNI sample) visualized on the pial surface of the FreeSurfer template (fs
on the left, and the right hemisphere is on the right. Vertices that have an uncorrected p-valu
and anterior views. The even-numbered rows show the medial, inferior, and posterior view
Comparing rates of atrophy across four clinical groups

Now,we present themaps revealed by the ST-LME and X-Slope ap-
proaches for characterizing longitudinal thinning differences between
four well-studied clinical groups (HC, stable MCI–sMCI-, converter
MCI–cMCI-, and AD patients), using the entire ADNI dataset. The sur-
face FWHM used for smoothing the thickness data for this analysis
was 8 mm. In the Supplementary material, we provide supporting
evidence for the validity of the assumptions in the ST-LME approach
based on this analysis.

Figs. 5 and 6 show the maps for comparing the rates of cortical
thinning between HC and AD subjects obtained using the two
methods: ST-LME and X-Slope. Figs. 7 and 8 show the same compari-
sons between sMCI and cMCI subjects.Wemake several important ob-
servations. First, the ST-LMEmaps of cortical thinning associated with
clinical Alzheimer's and conversion from MCI to AD are in strong
agreement with prior findings (Dickerson et al., 2009; Singh et al.,
2006). Second, ST-LME reveals a dramatically wider extent of sig-
nificant cortical thinning compared to X-Slope for both the AD vs. HC
and stable vs. converter MCI analyses. The difference is particularly
striking for the MCI group analysis of Figs. 7 and 8, where X-Slope
was barely able to detect any significant longitudinal difference be-
tween stable and converter MCI subjects. Finally, the sMCI vs. cMCI
map obtained with ST-LME is remarkably similar to the AD vs. HC
map obtained with X-Slope. This is likely pointing to a statistical
power issue. The regions exhibiting a large difference of cortical
thinning in AD (and thus are detectable by X-Slope) probably exhibit
a relatively smaller effect in the MCI group as well, which apparently
is detectable by a powerful method such as ST-LME, but not by
X-Slope. The decreased effect size in the MCI group could be due to
either a smaller difference in atrophy rates, whichwould be consistent
ngitudinal cortical thinning rates between HC (N = 210) and AD (N = 188) subjects
average): (A) ST-LME method and (B) X-Slope method. The left hemisphere is shown
e less than 0.05 are shown in color. The odd-numbered rows show the lateral, superior,
s. Color bar shows the corresponding significance value.



Fig. 6. Cortical regions exhibiting a statistically significant difference in longitudinal thinning between HC and AD subjects (in red) on the entire ADNI sample. These maps were
derived by thresholding the values shown in Fig. 5 with an FDR correction at q = 0.05. (A) ST-LME method and (B) X-Slope method. ST-LME reveals a much wider extent of
significant thinning in AD.
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with cortical thinning accelerating throughout this phase, or the
clinical heterogeneity in the MCI population, or both.

Finally, Supplementary Fig. S9 shows the cortical thinning group
comparison maps obtained with V-LME. These maps are almost iden-
tical to those obtained with ST-LME, suggesting that the two LME-
based methods offer similar statistical power on the entire ADNI
dataset, which contains over 750 subjects. This is in agreement with
our previous results that indicated that the difference in the statistical
power offered by V-LME and ST-LME decreases with increasing
sample size.

Supplementary experiments on the OASIS dataset

In the Supplementary material, we provide further experiments
that we conducted on the healthy subjects of the longitudinal OASIS
dataset (Marcus et al., 2007, 2010). In these experiments, we focused
on healthy aging. Thus, instead of conducting a case–control group dif-
ference analysis, our effect of interestwas simply nonzero longitudinal
thinning across the cortex. Our results from the OASIS supplementary
experiments are in full agreement with the ADNI experiments, and
hence help us generalize our conclusions about the statistical power,
repeatability and type I error control offered by ST-LME to applications
other than dementia.

Discussion

LME models provide a powerful and flexible approach for analyz-
ing longitudinal data, while elegantly handling variable missing
rates and non-uniform timing, and making use of subjects with a
single time-point in order to characterize population-level variation
(Bernal-Rusiel et al., 2012; Fitzmaurice et al., 2011). In this work, we
extended the LME framework to exploit the spatial structure in
neuroimage data and apply it to mass-univariate analysis. Our em-
pirical results demonstrated that the proposed spatiotemporal LME
(ST-LME) strategy offers significantly higher statistical power than
a vertex-wise naïve application of LME and an alternative bench-
mark method commonly used in prior LNI studies. This boost in
statistical power is particularly dramatic for studies with relatively
modest sample size.

In our first experiment, we conducted a direct comparison of the
statistical performance afforded by the proposed ST-LME approach
and two benchmark methods, namely the vertex-wise application of
the LME strategy (V-LME) and a vertex-wise cross-subject analysis
of within-subject slope estimates (X-Slope), using the longitudinal
ADNI data, which consisted of healthy controls (HC), subjects with
MCI, and AD patients. We employed FreeSurfer's tools to automatical-
ly compute thickness measurements across the entire cortical mantle
of each subject, which were then normalized to a common template.
By randomly sampling from the ADNI data, we created sub-groups
of AD + HC (2 N = 20–50, 800 random samples, or 400 independent
pairs of samples) and HC + HC (2 N = 20–50, 400 random samples)
subjects.

Our analysis based on HC + HC samples, where no group differ-
ences were expected, revealed that all three methods provided a con-
servative control of specificity — well within the bounds predicted by
theory. Next, we assessed sensitivity and repeatability on AD + HC
samples of varying size (N = 10–25). This analysis exposed the
dramatic gain in statistical power offered by the proposed ST-LME ap-
proach, especially when the sample size was modest. At a typical FDR
q-value of 0.05 and with N = 15, ST-LME afforded an empirical true
positive rate (quantified at the sample level) of 0.87, whereas
V-LME and X-Slope's sensitivity were approximately 0.56 and 0.21,



Fig. 7. Uncorrected statistical significance – negative log10(p-value) –maps comparing longitudinal cortical thinning rates between stableMCI (N = 227) and converterMCI (N = 166)
subjects (from the entire ADNI sample) visualized on the pial surface of the FreeSurfer template (fsaverage): (A) ST-LMEmethod and (B) X-Slopemethod. See caption of Fig. 5 for further
details.
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which represents a 55% and 314% gain, respectively. Our results
further revealed that the difference in the statistical power offered
by ST-LME and V-LME decreased as the sample size increased.

As expected, this increased sensitivity translated into a remarkable
increase in the reliability of discoveries (see Figs. 3–4). The average
overlap area between the detected regions in two independent
AD + HC samples of N = 15 at FDR q = 0.05 was 0 mm2 for
X-Slope, 236 mm2 for V-LME and 1456 mm2 for ST-LME. We empha-
size that the ST-LME results were generated by running the segmenta-
tion step separately for each new sample. Thus, the reported empirical
repeatability measures also reflect the variation in the segmentation
step.

We further quantified the effect of the segmentation step by run-
ning the same ST-LME analyses for different settings of the segmenta-
tion parameter k. These supplementary experiments demonstrated
that the proposed ST-LME method offers increased statistical power
and repeatability over V-LME for the recommended range of k values
between 1 and 2, while providing good control of type I error. In gen-
eral with higher k values, the segmentation step produced larger re-
gions, which improved efficiency but increased the type I error. Our
experiments suggested that for a wide range of k values (k b= 2),
the type I error was successfully controlled with the employed FDR
procedure.

In our second set of experiments, we conducted mass-univariate
analyses of cortical thinning on the entire ADNI data. Our results,
which were in strong agreement with the literature, illustrated the
use of the proposed ST-LME strategy in mapping disease-specific
longitudinal thinning effects. They further highlighted the dramatic
gain in statistical power offered by V-LME and ST-LME compared to
X-Slope. The cortical thinning maps obtained by the LME methods re-
vealed a substantially larger extent of cortical thinning associated
with AD and MCI to AD conversion. There was little difference
between themaps of V-LME (presented in the Supplementarymaterial)
and ST-LME, probably because the sample size of this experiment was
relatively large and the study was well powered.

Finally, we conducted additional experiments on a different data-
set (OASIS), where the effect of interest was aging-associated atrophy
and not dementia-related. Our results, in general, confirmed our ADNI
observations: ST-LME offers a substantial boost in statistical efficien-
cy, while maintaining good control of type I error rates.

The proposed ST-LME approach exploits the inherent spatial struc-
ture in neuroimaging data by treating subsets of locations as having
the same temporal covariance structure, as suggested by (Friston
et al., 2005), and modeling the local spatial correlations in the data
(Bowman, 2007). To achieve this, the entire image is adaptively
segmented into relatively small homogeneous regions of variable sizes
and a region-wise spatiotemporal model is constructed via a Kronecker
tensor product between a parametric spatial correlationmatrix and the
classical mixed effects temporal covariance matrix. This resulted in
parsimonious yet effective models for the spatiotemporal covariances
within homogeneous regions.

To our knowledge, there are only two other recently published
methods that are focused on mass-univariate longitudinal image
analysis (Li et al., 2013; Skup et al., 2012). These methods utilize a
marginal modeling approach (such as generalized estimating equa-
tions, GEE, and its variants), which provides a complementary strate-
gy to the LME methods we employed in our own work. In contrast
with the generalized linear model setting, in the linear model setting,
LME and GEE-type methods can lead to very similar types of infer-
ences (Fitzmaurice et al., 2011), although there are subtle, yet impor-
tant distinctions between the two approaches. The major advantages
offered by the LME approach are that it enables the explicit modeling
and analysis of within and across-subject sources of variability in the
temporal covariance, can elegantly handle unbalanced data, and most



Fig. 8. Cortical regions exhibiting a statistically significant difference in longitudinal thinning between stable and converter MCI subjects (in red). These maps were derived by
thresholding the values shown in Fig. 7 with an FDR correction at q = 0.05. (A) ST-LME method and (B) X-Slope method. ST-LME reveals a much more dramatic extent of signif-
icant thinning differences between two groups.
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importantly provides a valid inference strategy for the small-sample
setting, which is common in neuroimaging studies. Crucially, infer-
ence in GEE-type methods relies on asymptotic distributions, which
might not be appropriate for studies where N is small. We refer
the reader to (Fitzmaurice et al., 2011) for a detailed discussion of
this issue.

We plan to further investigate several open issues in the future.
The segmentation algorithm we used in the present work might be
sub-optimal and a better strategy would be to incorporate the spatial
correlation model into the segmentation step. That said, our empirical
results suggest that even with the employed sub-optimal segmenta-
tion step, the proposed ST-LME approach provides increased statisti-
cal efficiency. There are also alternative strategies we would like to
examine for modeling/exploiting the spatial smoothness of image
data. One such method is the recently proposed MARM framework
(Li et al., 2011), which has the advantage of being adaptive and
multi-scale.

The randomeffects selection strategywe used in ourwork employed
a likelihood ratio test based on a 50:50 mixture of chi-square distribu-
tions, as suggested in (Fitzmaurice et al., 2011). There is a recent debate
on whether this is an optimal strategy, or whether better approximate
distributions exist, cf. Greven et al. (2008). Future work will further
examine this issue in more detail and consider alternative inference
methods in the context of neuroimage analysis.

Other directions we plan to explore include using surface-based
distances between vertices to improve the accuracy of the spatial
covariance parameterization and employing alternative multiple
comparisons correction methods, for example those based on the
topology of the statistical maps, which might provide a further statis-
tical boost in examining longitudinal effects.
Conclusions

We presented a spatial extension of the linear mixed effects (LME)
approach, which provides a powerful and flexible framework for the
mass-univariate analysis of longitudinal neuroimage data. We have
implemented and validated these tools for mapping longitudinal cor-
tical thinning effects within the FreeSurfer framework. The proposed
approach is general and can be adapted to the analysis of any type of
longitudinal spatial data.
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