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Abstract

Multi-atlas label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. A
standard label fusion algorithm relies on independently computed pairwise registrations between individual atlases and the (target)
image to be segmented. These registrations are then used to propagate the atlas labels to the target space and fuse them into a single
final segmentation. Such label fusion schemes commonly rely on the similarity between intensity values of the atlases and target
scan, which is often problematic in medical imaging - in particular, when the atlases and target images are obtained via different
sensor types or imaging protocols.

In this paper, we present a generative probabilistic model that yields an algorithm for solving the atlas-to-target registrations
and label fusion steps simultaneously. The proposed model does not directly rely on the similarity of image intensities. Instead,
it exploits the consistency of voxel intensities within the target scan to drive the registration and label fusion, hence the atlases
and target image can be of different modalities. Furthermore, the framework models the joint warp of all the atlases, introducing
interdependence between the registrations.

We use variational expectation maximization and the Demons registration framework in order to efficiently identify the most
probable segmentation and registrations. We use two sets of experiments to illustrate the approach, where proton density (PD)
MRI atlases are used to segment T1-weighted brain scans and vice versa. Our results clearly demonstrate the accuracy gain due to
exploiting within-target intensity consistency and integrating registration into label fusion.

Keywords: Label fusion, generative model, registration, Demons algorithm.

1. Introduction

Registration-based segmentation (Rohlfing et al., 2005) is
the main inspiration behind many modern segmentation algo-
rithms. The principle behind this technique is simple: if an im-
age with delineated labels (henceforth an “atlas” 1) is available,
then one can deform (“register”) it to a previously unseen scan
(henceforth “target”), and use the resulting spatial transforma-
tion to propagate the labels to target space in order to obtain
a segmentation. Registration-based segmentation is a general
framework, but it has a particularly strong impact in neuroimag-
ing, partly thanks to the maturity of inter-subject registration
methods in this domain.

The main disadvantage of registration-based segmentation
is that a single atlas endowed with a deformation model is sel-
dom a sufficiently rich representation of the whole population.
If a target volume’s anatomy differs significantly from that of
the atlas, for example if there are topological differences not
modeled by the registration algorithm, the segmentation will
be poor. A possible solution to this problem is to use multi-
ple atlases that constitute a richer representation of anatomical
variation. The question is then how to combine the propagated

1throughout this paper we use the term “atlas” to refer to a volume for which
manual labels are available, as opposed to a statistical atlas, which summarizes
the spatial distribution of labels and / or intensities of a population.

labels into a final segmentation; this problem is known as label
fusion.

Such multi-atlas approaches are becoming increasingly pop-
ular mainly for three reasons. First, the maturity and availabil-
ity of registration methods (Klein et al., 2009; Avants et al.,
2008) help boost the performance of multi-atlas label fusion al-
gorithms. Second, label fusion methods, registration aside, are
relatively easy to implement. And third, the rapid development
of computer hardware is making the heavy computational cost
of label fusion, which is mostly due to the many registration
instances, manageable.

1.1. Related work

The simplest forms of label fusion are the so-called “best at-
las” approach and majority voting (Rohlfing et al., 2004, 2005).
In best atlas selection, the labels from the atlas most similar to
the target volume after registration are propagated to yield the
final segmentation. In majority voting, first applied to human
brain MRI segmentation in Heckemann et al. (2006), the most
frequently propagated label is assigned to each voxel in the tar-
get volume.

Label fusion performance can be improved via weighting,
i.e., by increasing the contribution of the atlases that are more
similar to the target scan, either globally or locally (Artaechevar-
ria et al., 2009). Langerak et al. (2010) use an iterative method,
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in which the performance of the individual atlases and the joint
segmentation are alternately estimated, using global weights in
label fusion. Local weights are used by Isgum et al. (2009),
who propose to compute the contribution of each atlas at each
voxel by the inverse of the absolute intensity difference after
registration. A more principled version of the method, based on
a statistical generative model of labels and intensities, was pro-
posed by Sabuncu et al. (2010). In fact, Isgum et al.’s method
can be seen as a special case of Sabuncu et al.’s model, where a
Laplace distribution is used to model image intensities. Coupé
et al. (2010) compare the local appearance of the target volume
around each voxel not only with patches of the atlases centered
at that voxel, but also patches which are slightly shifted from
it. The final label is a mixture of contributions from all such
patches, each weighed by the similarities. This is analogous to
the non-local means denoising algorithm (Buades et al., 2005).

Research in multi-atlas segmentation is also focused on im-
proving computational efficiency, usually by reducing the bur-
den of multiple registrations. For example, Aljabar et al. (2009)
propose using only the most similar atlases (measured with im-
age similarity before detailed nonlinear registration, or based
on meta-data such as subject age) in the segmentation. This
idea is taken one step further by van Rikxoort et al. (2010),
who propose selecting the most appropriate atlases “on the fly,”
and stop registering atlases when no further improvement is ex-
pected. An alternative approach to reduce the computational
burden was suggested by Depa et al. (2011), where the atlases
are pre-registered.

To enhance the performance of multi-atlas segmentation,
van der Lijn et al. (2012) use the propagated labels to create
a spatial prior, which is combined with label likelihoods given
by a voxel classifier, and then use graph-cuts to generate an
enhanced segmentation. Asman and Landman (2012) propose
adding a smoothness constraint to the estimated map of spa-
tially varying performance of each registered atlas. Wang et al.
(2011) use machine learning techniques to correct systematic
errors produced by multi-atlas segmentation in a given dataset.
Other recent contributions to the framework can be found in
Landman and Warfield (2011, 2012).

1.2. Limitations of current label fusion methods
A limitation of current weighted label fusion methods is that

they typically require the intensities of the atlases to be consis-
tent with those of the target scan. While this is not a problem
in calibrated modalities such as CT (e.g., Isgum et al. 2009), it
often prevents the application of these methods in MRI, unless
the scans have a similar type of contrast (e.g., T1-weighted) and
are preprocessed with an intensity standardization algorithm
(Nyul et al., 2000; Sabuncu et al., 2010). Even in this case,
a drop in performance is observed compared to using train-
ing and test data acquired with exactly the same hardware and
pulse sequence; see for instance Han and Fischl (2007), who
use MPRAGE data from a Siemens scanner to segment SPGR
data from a GE scanner.

There are many scenarios that could benefit from a cross-
modality label fusion algorithm. Assuming that the atlases are
T1-weighted, such a framework would be useful to analyze

data acquired with other T1 MRI sequences. This is for ex-
ample the case of legacy and clinical data. In the latter case, the
MRI acquisition protocols are often very different from those
used in Neuroscience research. Moreover, clinical data is of-
ten multispectral, so a cross-modality method makes it possible
to take advantage of channels other than T1. Inter-modality
label fusion algorithm could also be used to analyze data ac-
quired with MRI contrasts different from T1. For instance, T2-
weighted MRI is frequently used to image the hippocampus, as
in Mueller et al. (2007), or the new hippocampal data in the
ADNI study 2. Another potential application is the analysis of
infant MRI, in which the ongoing myelination changes the T1
and T2 of the tissue rapidly. This renders relying on intensity
correspondences impractical.

The inter-modality registration literature has coped with the
issue of intensity variation mainly through statistical metrics,
such as those based on mutual information (Maes et al., 1997;
Wells III et al., 1996; Pluim et al., 2003). Similarly, one can en-
vision a label fusion strategy that uses mutual information (MI)
for identifying the contribution of each atlas. This approach
will have to deal with two challenges. First, in the case of local
weights, it would be necessary to define a window around each
voxel to compute the metric. The size of the window would rep-
resent a trade-off between spatial precision and the reliability of
the metric. The second challenge is finding a principled way of
defining a MI-based weight. For example, using MI directly as
the weights does not sufficiently differentiate the contributions
of the atlases. This can be alleviated by defining the weights
as a power of the metric (see for instance Artaechevarria et al.
2009; Iglesias and Karssemeijer 2009). Whether this heuristic
strategy is optimal is an open question.

Another aspect that is often overlooked in multi-atlas seg-
mentation is the actual registration of the atlases. Typically, reg-
istration is seen as a preprocessing step, and the resulting defor-
mation fields are kept constant during segmentation. However,
if the registration is allowed to be updated during the fusion
process, it is in principle possible to obtain more accurate seg-
mentations by updating the deformations with information from
the current estimate of the segmentation. This strategy has been
successfully adopted in the single probabilistic atlas segmenta-
tion literature (Ashburner and Friston, 2005; Pohl et al., 2006a;
Yeo et al., 2008; Van Leemput et al., 2009). Furthermore, in
label fusion such an approach will allow the registrations to in-
teract between themselves. For instance, if the image intensi-
ties indicate that one atlas is well registered in a given region
while a second one is poorly registered, it should be possible to
improve the latter by using information from the former. In a
related approach, Depa et al. (2011) propose pre-registering the
atlases, building a summary image by averaging the deformed
intensities, and finally deforming this average to the target scan.
The spatial correspondences between the atlases and the target
are then computed by concatenating the appropriate transforms.
While this framework ties the deformations of the atlases to-
gether, it does not allow them to influence one another during
registration.

2http://adni.loni.ucla.edu/
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1.3. Contribution

This article builds on our previous conference papers (Igle-
sias et al., 2012a,b), which presented a generative model for
label fusion across modalities, taking advantage of the poten-
tial multimodal character of the data to segment. The method is
based on exploiting the consistency of voxel intensities within
the segmentation regions, as well as their relation with the prop-
agated labels. Here, we extend our contributions along several
novel directions. First, we integrate registration into the multi-
atlas label fusion framework across modalities. Rather than
considering registration a preprocessing step, we regard the de-
formation fields as model parameters that must be optimized
during the fusion. Second, we propose a true joint registration
framework, in which the registrations of the different atlases
are explicitly linked by the prior in a generative model. This
ensures that the contributions of the atlases are consistent, con-
siderably reducing the presence of outliers in the deformation
fields. Finally, we present a computationally efficient strategy
to “invert” the model and obtain the most probable voxel labels
in the target volume using Bayesian inference. The algorithm
does not depend on the modality of the target data, which can
be monomodal or multimodal.

The rest of this paper is organized as follows. Section 2
describes the generative model, and a segmentation algorithm
derived from it is presented in Section 3. Section 4 describes
the data and experiments used to demonstrate the proposed ap-
proach, and presents the empirical results. Finally, Section 5
discusses the results and concludes the article.

2. Generative Model

The proposed approach is based on a generative model of
MRI images that can be “inverted” using Bayes’ rule to obtain
the most likely segmentation given a target scan and a set of
atlases. The generative model is described here, whereas an
algorithm to infer the labels of a test scan is presented in Sec-
tion 3.

The different elements of the model detailed below are rep-
resented in the graphical model in Figure 1, and the correspond-
ing equations listed in Table 1. Moreover, the variables in the
model are summarized in Table 2, and the process through which
the model generates a sample image is illustrated in Figure 2.
We will now describe this process step by step.

If we were to draw a sample from the generative model, the
first step would be to randomly sample T , which is a transfor-
mation that maps the target image coordinate space to that of
a universal template. This template represents the population
average (in this study we used FreeSurfer’s “fsaverage”, Fischl
et al. 2002). We impose a prior on T that favors smooth trans-
formations (see Equation 1 in Table 1).

The next step would be sampling {Tn}, the transforms from
the target image coordinates to the nth atlas. We adopt a prior on
Tn which encourages both smoothness and consistency across
the deformations of the different atlases. To achieve the latter,
we pre-compute the deformation fields {Γn} that establish the
correspondence between the nth atlas and fsaverage, and then
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Figure 1: Graphical model. Random variables are in circles,
while deterministic parameters are in boxes. Observed vari-
ables are shaded. Plates indicate replication.

Table 1: Equations corresponding to the model in Figure 1.

1. T ∼ 1
Zk1

exp
[
−k1‖∇T‖2

]
2. Tn ∼

1
Zk1 ,k2

exp
[
−k1‖∇Tn‖

2 − k2‖Tn − Γ−1
n T‖2

]
3. Pl

n(x) ∝ exp
[
ρDl

n(Tn(x))
]

4. M ∼ 1
Zβ

∏
x∈Ω exp

(
β
∑

y∈Nx
δ(M(x) = M(y))

)
5. L(x) ∼ PM(x)(x)

6. Ĩ(x) ∼ 1√
2πσ2

L(x)

exp
[
−

(Ĩ(x)−µL(x))2

2σ2
L(x)

]
7. I(x) = Ĩ(x) exp

[
−

∑
p bkψk(x)

]

Table 2: List of variables in the model.

· x: a location in space.
· Nx: neighborhood of x on image grid.
· Ω: the target image domain.
· N: number of atlases.
· L: number of discrete labels, including one for background/unknown.
· Ln(x): (discrete) label of atlas n at location x.
· T : transformation from target image coordinates to fsaverage.
· Tn: transformation from target image coordinates to atlas n.
· Γn: transformation from fsaverage coordinates to atlas n.
· Dl

n(x): signed distance transform (+ = in, - = out) for label l, atlas n.
· Pl

n(x): prior probability of label l at location x based on atlas n.
· Pn(x) = [P1

n(x), . . . , PLn (x)].
· k1, k2 > 0: parameters of the deformation priors.
· Zk1,Zk1,k2,Zβ: normalizing coefficients for probability densities.
· ρ > 0: slope parameter of the logOdds based label prior.
· L(x) ∈ {1, . . . ,L}: labels of the subject that is being segmented.
· M(x) ∈ {1, . . . ,N}: field of discrete memberships in subject space.
· β: parameter of the Markov Random Field ensuring smooth M(x).
· Ĩ(x): underlying, latent image intensities before bias field corruption.
· I(x): observed image intensities.
· Θ: intensity model parameters {{µl}, {σ

2
l }, {bk}}.

· µl, σ
2
l : parameters of Gaussian distribution of intensities for label l.

· {ψk}: basis functions for bias field modeling.
· {bk}: coefficients corresponding to {ψk}.

we penalize the deviation of Tn from Γ−1
n T (Equation 2 in Ta-

ble 1). This way, Tn is modeled as a “noisy” version of the
combination of T and Γn.
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Figure 2: Illustration of the generative process: from atlases
{Ln} to intensities I(x). Rather than sampling from a uniform
Θ, we borrowed values from a sample MRI scan to make I(x)
and Ĩ(x) resemble a T1-weighted MRI volume. For simplicity,
we also assumed ρ = ∞ i.e., Pn(x) is one for a certain label
and zero for all other classes at each voxel. Note that spatial
transformations follow the opposite direction of the arrows rep-
resenting the deformations. For example, T1 deforms L1 into
P1 by computing P1(x) = L1[T1(x)].

Next, the transforms {Tn} are used to map to target space the
label probability maps Pl

n corresponding to each atlas. These
probability maps are computed from the discrete manual labels
using a logOdds model (Pohl et al. 2006b, see Equation 3 in
Table 1). In this model, {Ln}, n = 1, . . . ,N represents the gold
standard labels, with discrete values between 1 and L at each
voxel. Dl

n are the signed distance maps for each label and atlas,
and the slope of the model ρ is fixed. Again, because the trans-
forms are linked through T , the deformed probability maps are
expected to be similar.

Now, for each voxel location x, we assume that the underly-
ing (unknown) label of the target volume is sampled from one
of the (deformed) atlases, indexed by a hidden variable M(x).
The indices M(x), which take discrete values between 1 and
N, are not spatially independent, but follow a Markov Random
Field (MRF) model instead (Equation 4 in Table 1). Then, the
prior probability for underlying segmentation of a voxel given
the atlas index p(L(x) = l|M(x)) is given by Pl

M(x)(x) (Equation
5 in the table), which is a categorical distribution over labels.

Once the label L(x) is drawn from PM(x)(x), the underlying
“true” intensity Ĩ(x) (meaning, before bias field corruption) is
sampled from a Gaussian distribution with mean µL(x) and vari-
ance σ2

L(x) (Equation 6 in Table 1). Finally, the intensity Ĩ(x)
is modulated by a bias field to yield the observed intensities
I(x). Also known as B1-inhomogeneity, this bias field is the
product of non-uniform coil sensitivity profiles, and it mani-
fests itself as a slow-varying multiplicative gain. We model it
with a set of low-spatial-frequency basis functions (Equation 7
in the table, where {bk} are the coefficients, {ψk} are the basis
functions and the exponential ensures non-negativity). We use
the variable Θ to group all the image intensity parameters i.e.,
Θ = {{µl}, {σ

2
l }, {bk}}, and we assume a flat, uninformative prior

distribution over them, i.e., p(Θ) ∝ 1.
Relation with other models: some popular segmentation

methods can be seen as solutions to particular instantiations of
the proposed framework. If β = k2 = 0, the model becomes
similar to that in classical statistical-atlas-based segmentation,
e.g., Ashburner and Friston (2005), with two differences. First,
there are N individual warps in the generative process, rather
than a single deformation of the statistical atlas. Second, in the
proposed model the label priors are built in subject space, as
opposed to pre-merging them into a single probabilistic atlas in
a common coordinate frame. Also, if we assume that the defor-
mation fields are fixed (e.g., obtained by a registration method),
and we set β = 0, σ2

l → ∞,∀l, and ρ → ∞, we eliminate the
membership dependence between neighboring voxels and also
the dependence between labels and intensities. Therefore, the
solution to the model becomes majority voting. Finally, when
β → ∞ (still assuming fixed deformation fields), we are forc-
ing all the voxels to be originated by the same atlas. Then, the
solution to the model simplifies to the “best atlas” method of
Rohlfing et al. (2004), where the labels are propagated from the
single atlas estimated to be closest to the target volume.

Moreover, the proposed model can be viewed as bridging
the gap between single probabilistic atlas based segmentation,
e.g., Ashburner and Friston (2005), and multi-atlas label fusion.
In the former approach, there is a single spatial transformation
mapping target image coordinates to the common atlas coor-
dinate frame. In classical label fusion, there are N indepen-
dent registrations between the atlases and target image. In our
model, when k2 = 0, the registrations are independent a pri-
ori, which is similar to classical multi-atlas label fusion. When
k2 → ∞, all the atlases deform together, making the algorithm
equivalent to the use of a single probabilistic atlas. Any fi-
nite, positive value for k2 represents a case between the two
extremes.

3. Segmentation of a target subject

Given the generative model, segmentation is cast as an in-
ference problem in a Bayesian framework. The idea is to find
the most probable label map L (given the image intensities I
and the atlas labels {Ln}) according to the model:
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L̂ = argmax
L

p(L|I, {Ln})

= argmax
L

∫
Θ,{Tn},T

p(L,Θ, {Tn},T |I, {Ln})dΘd{Tn}dT

= argmax
L

∫
Θ,{Tn},T

p(L|Θ, {Tn}, I, {Ln})×

× p(Θ, {Tn},T |I, {Ln})dΘd{Tn}dT.

This expression is intractable because of the integral over
all registrations {Tn} and the integral over all imaging param-
eters Θ. Instead, if we make the standard assumption that the
distribution of these parameters in light of the observed data is
sharp, we can compute point estimates:

{Θ̂, {T̂n}, T̂ } = argmax
Θ,{Tn},T

p(Θ, {Tn},T |I, {Ln}),

and approximate:

p(Θ, {Tn},T |I, {Ln}) ≈ δ(Θ − Θ̂, {Tn − T̂n},T − T̂ ).

Then, the most likely labels can finally be computed as:

L̂ ≈ argmax
L

p(L|Θ̂, {T̂n}, I, {Ln}). (1)

We will first discuss in Section 3.1 an algorithm to obtain
point estimates of the model parameters. In short, these are
computed with a variational expectation algorithm in which the
posterior probability function of the memberships M(x) is ap-
proximated by a distribution q that factorizes over voxels. The
E step of the algorithm updates q, whereas the M step updates
the Gaussian and bias field parameters, as well as the registra-
tions. Once the algorithm has converged, the final segmentation
can be easily computed using the point estimates of the model
parameters and the final value of the distribution q, as we will
explain in Section 3.2.

3.1. Finding the most probable registration and image intensity
parameters

The core of the proposed algorithm is presented in this sec-
tion. The problem is to find the most likely values of Θ, {Tn}

and T given the observed data. Bearing in mind that we have
assumed a flat prior for Θ we have:

{Θ̂, {T̂n}, T̂ } = argmax
Θ,{Tn},T

p(Θ, {Tn},T |I, {Ln})

= argmax
Θ,{Tn},T

p(I|Θ, {Tn}, {Ln})p({Tn}|T )p(T ), (2)

where p(I|Θ, {Tn}, {Ln}) involves summing over all membership
fields M, which makes Equation 2 intractable. To overcome this
problem, we use variational expectation maximization (VEM)
and optimize a lower bound instead. Taking logarithms, we
define the negated free energy −J as:

−J(q,Θ, {Tn}) = log p({Tn},T ) + log p(I|Θ, {Tn}, {Ln})−
− KL(q(M)‖p(M|I,Θ, {Ln}, {Tn})), (3)

where KL(·‖·) is the Kullback-Leibler divergence and q is a dis-
tribution that approximates the posterior probability of M. The
negated free energy −J is a lower bound of the logarithm of the
objective function in Equation 2, because the KL divergence is
always non-negative.

VEM can be seen as a coordinate descent algorithm that
alternately maximizes −J in Equation 3 with respect to q(M)
(expectation or E step) and the model parameters Θ, T , {Tn}

(maximization or M step). In the E step of VEM, q is optimized
over a class of restricted functions. The standard computational
approximation is that q factorizes (mean field approximation)
such that

q(M) =
∏
x∈Ω

qx(M(x)),

where qx(m) is a categorical distribution over the atlas indices
m = 1, . . . ,N. In the particular case that β = 0, we recover
a standard Expectation Maximization (EM) algorithm: the ex-
pression p(M|I,Θ, {Ln}, {Tn}) factorizes over voxels and there-
fore it can be exactly matched by q(M). In that case, the KL di-
vergence becomes zero and −J is a lower bound of the objective
function that touches it at the current parameter values. Conse-
quently, optimizing it in the M step guarantees an increase in
the objective function. In the general case of β > 0, the KL
divergence is greater than zero, the lower bound does not touch
the objective function and the M step is not guaranteed to in-
crease the objective function; this is the reason why VEM is an
approximate solver. We now describe the E and M steps of the
algorithm.

3.1.1. E step - optimizing q
The only term in Equation 3 depending on q is the KL diver-

gence. Using the definition KL(A‖B) =
∑

z A(z) log[A(z)/B(z)],
we have:

q̂ = argmin
q

∑
M

q(M) log
q(M)

p(M|I,Θ, {Tn}, {Ln})

= argmin
q

∑
M

q(M) log
q(M)

p(I|M,Θ, {Tn}, {Ln})p(M)

= argmin
q

∑
M

q(M) log
q(M)

p(M)
∑

L p(I|L,Θ)p(L|{Tn}, {Ln},M)

= argmin
q

∑
x∈Ω

N∑
m=1

qx(m)

log qx(m) − β
∑

x′∈Nx

qx′ (m)

−
−

∑
x∈Ω

N∑
m=1

qx(m) log

 L∑
l=1

p(I(x)|Θl)p(Lm(x) = l|Tm)

 ,
where p(Lm(x) = l|Tm) is the prior for label l at location x

according to atlas m (deformed by Tm), given by Equation 3 in
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Table 1; and p(I(x)|Θl) is the probability of observing the in-
tensity I(x) according to the Gaussian distribution correspond-
ing to label l and the current estimate of the bias field (Equa-
tions 6 and 7 in Table 1).

If we write down the Lagrangian (with Lagrange multipliers
λx that ensure

∑N
m=1 qx(m) = 1), take derivatives and set them

to zero, we obtain:

qx(m) ∝ exp

β ∑
x′∈Nx

qx′ (m)

 L∑
l=1

p(I(x)|Θl)p(Lm(x) = l|Tm),

(4)
which we iterate to update q until convergence. After each iter-
ation, qx(M(x)) is normalized so that the constraint

∑
m qx(m) =

1 is satisfied. Note that we do not need to handle the non-
negativity constraint because the probabilities and exponentials
ensure that qx ≥ 0.

3.1.2. M step – optimizing Θ

Equation 3 can be rewritten:

−J(q,Θ, {Tn}) = log p({Tn},T ) + H(q)+

+
∑

M

q(M) log p(M, I|Θ, {Ln}, {Tn}), (5)

where H(q) is the entropy of the distribution q(M). The first
two terms of this expression do not depend on Θ, and can there-
fore be ignored in the optimization. Moreover, the structure of
q allows to rewrite the third term as a sum over voxels. The
problem of maximizing −J with respect to Θ becomes:

Θ̂ = argmax
Θ

∑
x∈Ω

N∑
m=1

qx(m) log
L∑

l=1

[p(I(x)|Θl)p(Lm(x) = l|Tm)],

where Θl = {µl, σ
2
l , {bk}}. We optimize this expression3 by up-

dating {µl}, {σ2
l } and {bk} one at a time (i.e., coordinate descent).

The means and variances can be updated using a standard EM
algorithm (Dempster et al., 1977). In the expectation (E) step,
the conditional distribution for the hidden variables (the label
at each voxel) given the current estimate of the means and vari-
ances is computed as:

wx(l) =

N∑
m=1

qx(m)
p(I(x)|Θl)p(Lm(x) = l|Tm)∑L

l′=1 p(I(x)|Θl′ )p(Lm(x) = l′|Tm)
.

In the maximization (M) step, the means and variances are up-
dated as:

µl ←

∑
x∈Ω wx(l)Ĩ(x)∑

x∈Ω wx(l)
, (6)

σ2
l ←

∑
x∈Ω wx(l)(Ĩ(x) − µl)2∑

x∈Ω wx(l)
. (7)

3note that the Gaussian probability density function of I(x) must incorporate
a scaling factor exp

[∑
k bkψk(x)

]
to ensure that it integrates to one.

Equations 6 and 7 update the means and variances of the
model assuming constant {bk} (and therefore constant corrected
intensities Ĩ). Then, we update the bias field coefficients with
constant {µl}, {σ

2
l }. Since there is no closed-form expression

for this update, we use the BFGS method with backtracking
(Nocedal and Wright, 1999) to optimize it numerically instead.
The expression for the gradient is:

∂(−J)
∂bk

=
∑
x∈Ω

ψk(x)
L∑

l=1

qL
x (l)

 Ĩ(x)(Ĩ(x) − µl)
σ2

l

− 1
 . (8)

Since there is no dependency on k in the sum over labels,
Equation 8 can be seen as the dot product of basis function ψk

with an image that needs to be computed just once, making the
gradient relatively fast to evaluate.

3.1.3. M step - optimizing T and {Tn}

The goal is now to maximize −J with respect to the spa-
tial transformations. As for Θ, it is more convenient to work
with Equation 5 rather than Equation 3, as we can ignore the
term H(q). To carry out this optimization, we use the so-called
“Demons algorithm” trick (Thirion, 1998; Vercauteren et al.,
2007), which provides a computationally efficient strategy to
perform nonlinear registration. The basic idea of the Demons
trick is to decouple the optimization of the image likelihood
term and the prior on the deformations; we briefly describe the
algorithm in Appendix A for completeness.

Expanding Equation 5, we need to solve:

argmax
{Tn},T

∑
n

∑
M

q(M) log p(M, I|Θ, {Ln}, {Tn})+log p({Tn}|T )+log p(T ).

(10)

This equation is analogous to the original Demons algo-
rithm. The data likelihood term∑

M

q(M) log p(M, I|Θ, {Ln}, {Tn})

replaces the sum of squared differences that appears in the orig-
inal method (Equation A.1). The prior on the deformations has
the same shape as in the original Demons method as well. The
difference is that now we have N terms that encourage the indi-
vidual Tn’s to be close to Γ−1

n ◦ T , leading to the joint solution
of N + 1 registration problems (including T )

Following Vercauteren et al. (2007), we decouple the op-
timization of the image likelihood term and the priors by per-
forming a two-step optimization. In the first step, the algorithm
minimizes

argmin
un

κ‖un‖
2−

∑
x∈Ω

qx(n) log

 L∑
l=1

p(I(x)|Θl)Pl
n(Tn(x) + un(x))

 ,
(11)

which is analogous to Equation A.2 in Appendix A. Here,
κ > 0 is a free parameter of the algorithm that influences op-
timization efficiency, and un is an additive deformation update
field i.e., un(x) is a three-dimensional vector that updates Tn(x),
the estimate of the mapping of point x in target image space to
its corresponding point x + Tn(x) + un(x) in atlas n.
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un(x) =

 2κ
qx(n)

I +

∑L
l=1 p(I(x)|Θl)Hl

n(Tn(x))∑L
l=1 p(I(x)|Θl)Pl

n(Tn(x))
−

[∑L
l=1 p(I(x)|Θl)Gl

n(Tn(x))
] [∑L

l=1 p(I(x)|Θl)Gl
m(Tn(x))

]t[∑L
l=1 p(I(x)|Θl)Pl

n(Tn(x))
]2


−1 qx(n)

∑L
l=1 p(I(x)|Θl)Gl

n(Tn(x))∑L
l=1 p(I(x)|Θl)Pl

n(Tn(x))

 (9)

The optimization of un is fast because it can be carried out
voxel by voxel. Furthermore, the gradient and Hessian at un = 0
have closed-form expressions; see Equation 9, where I is the
3 × 3 identity matrix, Hl

n(x) and Gl
n(x) are the Hessian and gra-

dient of Pl
m(x) respectively, and we have computed a Gauss-

Newton update. Since our model is based on the small defor-
mation assumption, in practice we limit the norm of the update
field to 3 mm.

Given an update field un, the second step of the optimization
effectively performs a regularization by considering the priors.
Working in the Fourier domain, it can be shown that an efficient
solution is equivalent to the following convolution (Vercauteren
et al., 2007):

Tn ←

(
κ

κ + k2
(Tn + un) +

k2

κ + k2
Γ−1

m T
)
? K, (12)

where? denotes convolution and K is a smoothing kernel (Cachier
et al., 2003). As suggested in Vercauteren et al. (2007), we use
a Gaussian kernel. This update is analogous to Equation A.3 in
Appendix A.

Finally, the update of T can also be easily be derived in the
Fourier domain, yielding:

T ←

(1/N)
N∑

m=1

ΓnTn

 ? K. (13)

We only take one registration step at each iteration of the
VEM algorithm, since the cost function changes when we up-
date {Tn}, i.e., we go back to quickly recompute q and Θ (for
which EM converges quickly, except for the first few itera-
tions) and then we update the registrations again. Therefore,
we are not really optimizing Equation 3, but improving it in-
stead. Dempster et al. (1977) refer to this type of EM algorithms
(which improve rather than optimize at each step) as “general-
ized EM”.

3.2. Obtaining the most probable labels
By substituting the point estimates Θ̂, {T̂n} from Section 3.1

into Equation 1 and utilizing the approximation for the posterior
of M, we obtain:

L̂ ≈ argmax
L

p(L|I, Θ̂, {Ln}, {T̂n})

= argmax
L

∑
M

p(L|M, I, Θ̂, {Ln}, {T̂n})p(M|I, Θ̂, {Ln}, {T̂n})

≈ argmax
L

∑
M

p(L|M, I, Θ̂, {Ln}, {T̂n})q(M)

= argmax
L

∏
x∈Ω

N∑
m=1

qx(m)
p(I(x)|Θ̂L(x))p(L(x)|Lm, T̂m)∑L

l′=1 p(I(x)|Θ̂l′ )p(L(x) = l′|Lm, T̂m)
.

Computing the most likely segmentation then simplifies to
taking the maximum across labels of this expression at each
voxel:

L̂(x) ≈ argmax
l

N∑
m=1

qx(m)
p(I(x)|Θ̂l)p(L(x) = l|Lm, T̂m)∑L

l′=1 p(I(x)|Θ̂l′ )p(L(x) = l′|Lm, T̂m)
.

(14)

3.3. Overview of the algorithm
The whole segmentation algorithm is summarized in Ta-

ble 3. First, the registrations are initialized with affine trans-
forms, the bias field estimate with a constant field equal to one
at every spatial location, the Gaussian parameters with sample
means and variances (based on the labels propagated with the
affine registrations), and the distribution q to a constant value
equal to the inverse of the number of atlases (independently of
the spatial location). Then, the algorithm iterates between the
E and M steps of the VEM algorithm to estimate the model
parameters. The E step updates q(M), whereas the M step se-
quentially reestimates the Gaussian parameters, bias field pa-
rameters and registrations. For these VEM iterations, we use
a multi-resolution scheme for computational efficiency and to
avoid getting stuck in local maxima of the objective function.
Once the VEM algorithm has converged, the estimated model
parameters and the final value of q(M) can be used to estimate
the most probable segmentation using Equation 14.

4. Experiments and results

Here we describe a set of experiments that validate the pro-
posed model. In Section 4.1, the MRI data used in the study are
described. The experimental setup and a number of competing
methods are presented in Section 4.2. The results are presented
in Section 4.3.

4.1. Materials
In this study, we used two datasets: one of proton density

(PD) weighted MRI scans and another of T1-weighted MRI
scans.

The PD dataset consists of PD-weighted brain scans from
eight healthy subjects. The original purpose of this dataset
was to infer the underlying MRI properties of the tissue (Fis-
chl et al., 2004), for which a multiecho FLASH sequence was
used (1.5T, TR=20ms, TE=min, α = {3◦, 5◦, 20◦, 30◦}, 1 mm.
isotropic voxels). The PD-weighted images correspond to the
smallest flip angle α = 3◦. A total of 36 structures were man-
ually labeled using the protocol described in Caviness Jr. et al.
(1989). In the annotation process, the human raters took advan-
tage of the higher contrast, T1-weighted images corresponding
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Table 3: Summary of the proposed unified registration / label
fusion framework.

1. Initialize registrations with affine transforms. Initialize
Gaussian parameters with sample means and variances. Set
bias field coefficients bk = 0, ∀k. Set qx(m) = 1/N,∀x,m.

2. For each resolution level, from coarse to fine:
a) update q with Equation 4 until convergence.
b) update means and variances with Equations 6 and 7.
c) update the bias field parameters with the BFGS algorithm,
using the expression in Equation 8 for the gradient.
d) Update the registration by:

I: computing un(x) with Equation 9.
II: adding the result to the current estimate of the
deformation, i.e., Tn ← Tn + un.
III: update Tn’s with Equation 12
IV: update T with Equation 13

d) If parameter estimates not converged, go to (b)

3. Use the latest estimate of q to obtain the final segmentation
with Equation 14.

to the largest flip angle α = 30◦. The PD and T1 images are
intrinsically aligned due to the nature of the pulse sequence. As
in Iglesias et al. (2012a); Sabuncu et al. (2010), we only used
a representative subset of the structures for evaluation in this
study: white matter (WM), cerebral cortex (CT), lateral ventri-
cle (VE, including the inferior lateral ventricle and the choroid
plexus), cerebellum white matter (CWM), cerebellum cortex
(CCT), thalamus (TH), caudate (CA), putamen (PU), pallidum
(PA), hippocampus (HP) and amygdala (AM).

The T1 dataset, which is the training dataset described in
Han and Fischl (2007), consists of 39 T1-weighted brain MRI
scans4 (MP-RAGE, 1.5T, TR=9.7ms, TE=4.ms, TI=20ms, α =

10◦, 1 mm. isotropic resolution) and corresponding manual de-
lineations of the same brain structures (same labeling protocol).
We note that these are the same subjects that were used to con-
struct the probabilistic atlas in FreeSurfer 5.

The choice of these two datasets for the experiments is mo-
tivated by the fact that the same labeling protocol was used
to make the manual annotations on both of them. Therefore,
we can directly compare the gold standard segmentations of
a dataset with the automated segmentations based on knowl-
edge from the other without introducing a bias in the evalua-
tion. All the scans from both datasets were skull-stripped using
FreeSurfer and tightly cropped around the whole-brain mask in
order to reduce the computational burden of the algorithms.

4.2. Experimental setup
To evaluate the proposed method, we used two different se-

tups. In the first one, the PD scans are segmented using the

4Han and Fischl (2007) report 40 scans, but two of them correspond to the
same subject, so we discarded one of them.

5http://surfer.nmr.mgh.harvard.edu

T1 volumes as atlases. The second setup is symmetric: the
T1 scans are segmented with the PD scans playing the role of
atlases. For each of the two setups, the performance of four
competing methods was measured with the Dice overlap score,
defined as: Dice(A,M) = 2|A ∩ M|/(|A| + |M|), where A is the
automatic segmentation, M is the manual segmentation, and | · |
denotes the corresponding volume. These four methods are de-
scribed next.

The first method we assess is majority voting, where the at-
lases were registered to the target volume using Elastix (Klein
et al., 2010). A grid of control points and b-splines were used to
model the nonlinear deformations of the atlases (Rueckert et al.,
1999), which were initialized with affine transforms. Mutual in-
formation was used as cost function. A multi-resolution scheme
with three levels – 4 mm, 2 mm and 1 mm – was used to opti-
mize the deformations, with separation between control points
equal to 32 mm, 16 mm and 8 mm, respectively. The choice
for the control point separation at the finest level was based on
pilot experiments which revealed that, below 8 mm, the quality
of the registration began to degrade. The performance degraded
even more when replacing b-splines by a demons-like registra-
tion algorithm, specifically the publicly available diffeomorphic
method SyN (Avants et al., 2008). It seemed the case that, in
our dataset, mutual information simply cannot steer very flex-
ible models towards the right registration. We must, however,
note that much smaller spacings between control points have
been successfully used in the literature in other scenarios (e.g.,
2.5 mm for intra-modality T1 MRI registration in Klein et al.
2009).

The second method is label fusion without integrating reg-
istration into the framework, which we will refer to as “label fu-
sion with precomputed registrations.” We used the same Elastix
registration as in majority voting, and never updated it during
the fusion. In other words, we skipped step 2d in Table 3. This
method is essentially very similar to the one presented in a pre-
vious workshop paper by the authors (Iglesias et al. 2012b; no-
tice the improvement in the inference algorithm with respect
to Iglesias et al. 2012a, marginalizing over the segmentations
when solving for the intensity likelihood parameters in the M-
step).

The third approach integrates registration into the frame-
work. The deformations were initialized with affine registra-
tions computed via Elastix, and all subsequent nonlinear warps
were estimated within the proposed framework. Therefore, the
intensities of the atlases were not used during the label fusion
phase. We assume that k2 = 0, i.e., the prior probability for the
registrations treats them as independent. Henceforth, we refer
to this method, which constitutes our third benchmark, as “uni-
fied label fusion with independent registrations.” The fourth
and final method we implemented in our experiments repre-
sents a full instantiation of the proposed model, with k2 > 0.
We refer to this method as “unified label fusion with linked reg-
istrations.”

The parameter settings for the experiments were the follow-
ing. We set β = 0.75 and ρ = 1.0. The free parameter κ of
the Demons algorithm was set to κ = 0.05/N, and then we set
k2 to a value such that k2/(κ + k2) = 15%. The constant k1
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is directly related to the width of Gaussian kernel used to ap-
proximate Equation A.3; we set the standard deviation of this
Gaussian to 2.5 mm. The bias field basis {ψk} corresponds to a
third-order polynomial (which has 20 coefficients). The values
for ρ and β were borrowed from Sabuncu et al. (2010); Iglesias
et al. (2012a). The values for k1, k2, κ were tuned by visual
inspection in pilot experiments with a T1 dataset from the first
author’s brain.

To precompute the deformations {Γn} in the method with
linked registrations, we used two different algorithms. For the
T1 dataset, we reused the registrations from Sabuncu et al. (2009),
which rely on a log-domain diffeomorphic registration method.
The registrations are based on the sum of squared differences
between intensity-normalized versions of the scans. The inten-
sity normalization was carried out with FreeSurfer, which is T1
specific. For the PD dataset, rather than preprocessing the data
to normalize the intensities (which is relatively unexplored for
brain MRI acquired with weighting other than T1), we used
SyN with local cross-correlation, which is known to work well
in intra-modality scenarios without normalizing the intensities
(Klein et al., 2009).

We ran two sets of experiments. In the first set, we ex-
plored the performance of the algorithms as a function of N,
the number of training atlases. To summarize the performance
across the brain structures of interest, we computed for each
target scan a single score, which we denominate “brainwide
Dice overlap”. This score is simply the mean of the Dice scores
across these structures. In the second set of experiments, the
number of atlases was set to a high value, which is the scenario
we would ideally operate in practice: N = 20 for the PD data
and N = 8 (the maximum) for the T1 data. The Dice over-
lap was assessed for each brain structure independently. Non-
parametric Mann-Whitney U-tests were used for statistical hy-
pothesis testing of whether one method outperforms another. In
all cases, we repeated the experiments 10 times (or as many
times as possible combinations of atlases, if less than 10) with
different randomly selected subsets of atlases in order to reduce
the bias introduced by the (random) atlas selection.

4.3. Results
Figures 3 and 4 show, for each of the two datasets, the mean

and the standard deviation of the the brainwide Dice overlap as
a function of the number of training atlases. For the PD dataset,
we consider values of N up to 20, since the performances of the
algorithms seem to have flattened by then, as seen in Figure 3.
For the T1 dataset, we consider values of N up to eight, which
is the maximum number of available atlases.

Similar conclusions can be drawn from both figures. The
full version of the framework with integrated and linked reg-
istrations produces a consistent improvement over the version
with independent registrations, which in turn outperforms label
fusion with precomputed registrations. By taking advantage of
the consistency of the intensities in the target volume, all the
fusion-based methods (both with and without integrated regis-
tration) clearly outperform majority voting. Moreover, for the
same reason, they are also able to produce decent results even
with N = 2, 3 atlases. Of course, their performance also flattens

  

Figure 3: Average brainwide Dice overlap of the four different
algorithms as a function of the number of training atlases: PD
dataset. The error bars span one standard deviation of the data.

  

Figure 4: Average brainwide Dice overlap of the four different
algorithms as a function of the number of training atlases: T1
dataset. As in Figure 3, the error bars span one standard devia-
tion of the data.

earlier, so the gap with respect to majority voting narrows as N
increases.

In the second experiment, N is set to 8 for the T1 dataset and
20 for the PD dataset. The boxplots for the structure-wise Dice
overlap scores for the two datasets are shown in Figures 5 and 6,
which also display whether there are statistically significant dif-
ferences (at p < 0.01) between the performances of the different
methods.

Compared with majority voting, the label fusion approaches
produce significantly higher Dice scores for almost every struc-
ture. As expected, the difference is especially large for struc-
tures with convoluted surfaces (which are more difficult to reg-
ister), such as the cortex and the white matter of the cerebrum
and the cerebellum. There is only one structure out of 22 (in
both datasets), for which the proposed framework is signifi-
cantly worse than majority voting: the putamen in the PD dataset.
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  Brain structure

Figure 5: Boxplot of Dice overlap scores corresponding to the
11 structures of interest when automatically segmenting the
PD-weighted data with N = 20 atlases; see Section 4.1 for
the abbreviations. The segmentation methods are majority vot-
ing (black), label fusion with precomputed registrations (red),
unified label fusion with independent registrations (green), and
unified label fusion with linked registrations (blue). A colored S
above a box means that the method corresponding to the color
of the S is significantly better than the method at hand with
p < 0.01. Horizontal box lines indicate the three quartile val-
ues. Whiskers extend to the most extreme values within 1.5
times the interquartile range from the ends of the box. Samples
beyond those points (outliers) are marked with crosses.
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Figure 6: Boxplot of Dice overlap scores corresponding to the
11 structures of interest when automatically segmenting the T1-
weighted data with N = 8 atlases. See caption of Figure 5 for
an explanation of the figure.

This is due to the inability of the Gaussian intensity assumption
to model the claustrum, a thin layer of gray matter in the white
matter located between the putamen and the cortex. Because
the claustrum is not manually annotated in the gold standard,
it is often labeled as putamen and/or cortex by the label fusion
algorithms.

Within the label fusion strategies, we observe significant
improvement with respect to majority voting in more structures
as we increase the complexity of the model. The fusion scheme
with precomputed registrations significantly outperforms ma-
jority voting in 10 structures, whereas the models with inte-
grated registrations display significant improvement in 15. Uni-

fied label fusion with independent registrations outperforms la-
bel fusion with precomputed registrations for three structures
(caudate in PD, thalamus in putamen in T1). However, it is
also significantly worse for other two: putamen and amygdala
in PD. On the other hand, when we link the registrations in the
prior, the resulting method improves upon the algorithm with
precomputed registrations in seven structures, while being out-
performed only in two (cortex and pallidum in T1). Finally, a
small improvement (though not always significant) can be ob-
served from the version with independent registrations to the
version with linked registrations: the amygdala improves sig-
nificantly in PD, whereas the white matter, caudate and amyg-
dala do so in T1. On the other hand, the cerebral cortex and the
pallidum get worse in T1.

Finally, Figure 7 displays a typical segmentation from each
dataset. Majority voting produces overly smooth boundaries
which often do not agree with the manual labels, especially for
the white matter and cortex. Its independence from the image
intensities in the fusion only represents and advantage when
segmenting the putamen, which the proposed framework un-
dersegments due to its inability to model the intensities of the
claustrum; this region is highlighted by an arrow in the segmen-
tation of the sample PD scan generated by majority voting. La-
bel fusion with precomputed registrations produces much sharper
boundaries, and unified label fusion with integrated registration
(especially with the linked prior) produces slightly better seg-
mentations; see for example the left caudate and hippocampus
in the PD volume, or the thalamus and pallidum in the T1 vol-
ume (highlighted by arrows in the figure).

5. Discussion and Future Work

Multi-atlas label fusion is a flexible approach that yields
robust and accurate automatic segmentation tools. Most prior
label fusion methods treat registration as a separate problem,
which is typically solved in a pre-processing step, where each
atlas is registered to the target scan independently. However,
probabilistic atlas-based segmentation methods have demon-
strated that unifying registration and segmentation can produce
significant improvements in the final result, since both prob-
lems are interdependent. Furthermore, in the label fusion ap-
proach, coupling the multiple atlas registrations might have the
potential to further improve the accuracy in the individual reg-
istration results, which in turn might benefit segmentation ac-
curacy. On the other hand, many of the successful label fusion
algorithms make use of the appearance similarities between the
atlases and target scan in order to determine the relative con-
tribution of each atlas. To date, however, there has been little
effort to devise a principled weighted label fusion method that
can handle intensity variations in a setting where the atlases and
target scan are obtained using different imaging modalities. In
this work, we presented a probabilistic label fusion model that
(i) unifies the registration and label fusion steps, (ii) couples the
multiple atlas registrations, and (iii) can handle intensity varia-
tions due to modality differences between atlases and the target
scan.
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INPUT VOLUME GROUND TRUTH   MAJ. VOTING  LABEL FUSION   INDEP. REGS.   LINKED REGS. EST. BIAS FIELD.

Figure 7: Sample slices of two representative scans, one from the PD dataset (top row, coronal view, segmented with N = 20
atlases) and one from the T1 dataset (bottom row, sagittal view, segmented with N = 8 atlases). The first column displays the
original MRI data. The second column shows gold standard labels. The next four columns display the outputs from the different
segmentation methods. Finally, the rightmost column overlays the estimate of the bias field on the original MRI data. The color
map is the following: WM = white, CT = red, VE = purple, CWM = light yellow, CCT = orange, TH = green, CA = pale weak
cyan, PU = pink, PA = blue, HP = yellow, AM = cyan. The arrows point at regions in which one a method outperforms the others.

The proposed algorithm is designed to handle situations where
the atlas images and target scan were acquired via different
pulse sequences with different tissue contrasts. The method
does not rely on the similarity of intensities across the atlases
and the target volume per se, but on the consistency of intensi-
ties within regions in the target volume. In fact, the proposed
method does not require the image intensities of the atlases to
be available, which might be a useful feature when the images
themselves cannot be released due to restrictions, but the labels
can.

The presented approach can be viewed as a generalization
of existing supervised segmentation methods. For example, we
can set some model parameters such that the atlas registrations
are decoupled and not updated during label fusion, which ef-
fectively is equivalent to more traditional label fusion methods.
In this set-up, many flavors of label fusion (such as majority
voting, or weighted averaging) can be easily derived. Alterna-
tively, we can force all atlas registrations to be equal (by setting
k2 → ∞), which will in turn make the model equivalent to a
classical probabilistic segmentation atlas, where there is a sin-
gle atlas coordinate frame. Hence, we can regard the proposed
model as a bridge that connects classical segmentation methods
that rely on a single probabilistic atlas and more recent label
fusion methods.

Our results clearly demonstrate that the presented frame-
work produces segmentations that are significantly more accu-
rate than those obtained with majority voting, a classical label
fusion approach that is also suitable for cross-modality scenar-
ios. We only observed a significant decrease a performance
for one structure in our experiments: the putamen in the PD
dataset. We are confident that such difference would disappear
if the claustrum was labeled in the training dataset. The global
improvement in Dice score, which is around 4-5%, has a direct,
positive impact on subsequent analyses. For instance, in volu-

metric studies, it can be found in practice that the increases in
Dice score and in the precision of volume estimates are often
on the same order.

Furthermore, we quantify the accuracy gain offered by the
different components of the proposed model. Firstly, unify-
ing registration and label fusion, as opposed to pre-computing
the multiple atlas registrations, clearly provides an improve-
ment, as revealed by the comparison with a version of the pro-
posed model where the registrations were computed in a pre-
processing step (by maximizing the mutual information between
atlas and target scan intensities) and not allowed to be updated
in label fusion. We note that the latter method in fact makes use
of atlas intensities during pre-processing, which is not the case
for the full version of the proposed method that relies solely on
the target scan intensities. Secondly, coupling atlas registrations
also provides a significant performance boost. We believe the
prior we adopt on the deformations that links the atlases through
a pre-computed co-registration, provides a more realistic model
for the geometric relationship between the atlases and the target
scan, yielding more accurate segmentations as observed in our
results.

The proposed framework offers another advantage that was
not explored in this manuscript: the model can easily exploit
multi-channel target subject data to improve segmentation qual-
ity. This can be achieved by simply modifying the image likeli-
hood term, p(I|Θ), which could take the form of a multi-variate
Gaussian, similar to the model adopted in Iglesias et al. (2012b).

The presented algorithm was implemented in Matlab with-
out optimizing for speed of execution or memory usage. The
run time of the algorithm on a single CPU core was roughly one
hour per training atlas, and the memory footprint approximately
8 GB. In addition to optimizing the code (possibly implement-
ing it in a low-level language such as C++), the efficiency of the
algorithm could be improved by first identifying a small subset
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of atlases that are similar to the target volume (e.g., through an
affine transform), and then using only the subset in the segmen-
tation (e.g., as in Depa et al. 2011).

We instantiated our model in the context of brain MRI scans.
This application motivates the choice of intensity corruption
model (i.e., bias field / B1 inhomogeneity), which is specific
to MRI. However, other corruption models could in principle
be used to apply the proposed framework to segmentation of
images from organs acquired with other modalities; testing the
performance is such alternative scenarios remains as future work.

There are other obvious directions to explore. For exam-
ple, we can investigate the use of other registration algorithms.
In particular, a diffeomorphic implementation of the employed
Demons-style algorithm would be straightforward (Vercauteren
et al., 2007). Even though the registration is inherently asym-
metric (labels to intensities), the diffeomorphic constraint usu-
ally produces more realistic deformation fields. Furthermore,
we plan to conduct a detailed analysis of how the degree of
coupling between atlas registrations effects segmentation accu-
racy. This will allow us to further characterize the relationship
between classical probabilistic atlas-based segmentation meth-
ods and multi-atlas label fusion.

Appendix A. Summary of the Demons algorithms

In the classical Demons framework, registration is cast as a
minimization problem:

ŝ = argmin
s

∑
x

[
‖F(x) − M(x + s(x))‖2 + k1‖∇s(x)‖2

]
, (A.1)

where F(x), M(x) and s(x) are the fixed image, the moving im-
age and the spatial transform, respectively. Rather than optimiz-
ing for s directly, the Demons trick introduces an auxiliary field
c(x) such that c defines point correspondences between image
voxels and s now includes an error term we allow in the field.
The problem becomes:

{ŝ, ĉ} = argmin
s,c

∑
x

‖F(x) − M(x + c(x))‖2+

+ κ
∑

x

‖s(x) − c(x)‖2 + k1

∑
x

‖∇s(x)‖2,

where κ is a free parameter that influences the efficiency of the
optimization. This problem can be solved using coordinate de-
scent, i.e., iteratively solving for c assuming s fixed and vice
versa.

To optimize for c, we do not need to consider the term
k1‖∇s(x)‖2. Therefore, the field can be updated at each voxel
location independently. Using the change of variables u(x) =

c(x) − s(x), the problem becomes:

û(x) = argmin
u(x)

[F(x) − M(x + s(x) + u(x))]2 + κ‖u(x)‖2, (A.2)

which has a closed-form solution (Vercauteren et al., 2007).
Once u(x) has been computed, c is updated as follows: c(x) ←
s(x) + u(x).

To optimize for s, we need to solve:

ŝ = argmin
s

∑
x

[
‖s(x) − c(x)‖2 +

k1

κ
‖∇s(x)‖2

]
.

Working in the Fourier domain, it is easy to show that:

Ŝ (w) = argmin
S (w)

‖S (w) −C(w)‖2 +
k1

κ
‖w‖2‖S (w)‖2,

where w is the complex spatial frequency and C(w) and S (w)
are the Fourier transforms of c(x) and s(x) respectively. Taking
derivatives, it is straightforward to show that the optimal field
S is:

Ŝ (w) =
1

1 + k1
κ
‖w‖2

C(w). (A.3)

In practice, convolution with a Gaussian kernel is used to
approximate the low-pass filtering effect of the term

[
1 + k1

κ
‖w‖2

]−1
.

In equation 10, there are two data terms next to the penalty
term ‖∇s‖2. Again, it is easy to show in the Fourier domain
that the solution is a smoothed version of the weighted sum of
the penalty terms (Equation 12). A similar reasoning is behind
Equation 13, in this case with uniform weights.
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