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Abstract. Increasing scan resolution in magnetic resonance imaging is
possible with advances in acquisition technology. The increase in resolu-
tion, however, comes at the expense of severe image noise. The current
approach is to acquire multiple images and average them to restore the
lost quality. This approach is expensive as it requires a large number of
acquisitions to achieve quality comparable to lower resolution images. We
propose an image restoration method for reducing the number of required
acquisitions. The method leverages a high-quality lower-resolution image
of the same subject and a database of pairs of high-quality low/high-
resolution images acquired from different individuals. Experimental re-
sults show that the proposed method decreases noise levels and improves
contrast differences between fine-scale structures, yielding high signal-to-
noise ratio (SNR) and contrast-to-noise ratio (CNR). Comparisons with
the current standard method of averaging approach and state-of-the-art
non-local means denoising demonstrate the method’s advantages.

1 Introduction

Resolution in medical imaging sets a fundamental limit on the scale of structures
that can be visualized. Increasing resolution yields numerous benefits for both
basic research and clinical applications. In magnetic resonance imaging (MRI),
higher field strengths and array receive coils allow acquisition of increased reso-
lution. This increase, however, comes at the expense of lower signal-to-noise ra-
tio (SNR) and lower contrast-to-noise ratio (CNR). Scientists currently acquire
multiple high-resolution (high-res) images of the same structure and average
them to recover the SNR(CNR) lost by the increased resolution. This approach
comes at an extremely steep price: doubling the resolution requires scanning
64 times as long to achieve comparable SNR for 3D encoded acquisitions. Ob-
taining high quality images with reduced scan time is a necessary step to make
higher-resolution imaging feasible for clinical practice and available for a larger
number of research studies. We believe that image restoration can provide a
viable alternative to acquiring a large number of scans.

Restoration (denoising) is an active field of research in both computer vision
and MRI literature. The most popular approaches that have been applied to MRI
are based on Gaussian filtering[1], wavelet decompositions[14], anisotropic diffu-
sion[9, 11], non-parametric estimation[2] and non-local means[8, 3, 5, 13]. While
these are successful in denoising MRI, they do not take into account the specific



aspects of high-res acquisition. As a result, although they are able to increase the
SNR, they are not effective in restoring the contrast between fine-scale anatom-
ical details in the presence of severe noise.

High-res acquisitions in MRI are particularly difficult for restoration. The
noise levels often severely distort the appearance of fine-scale structures, whose
restoration based only on a small number of acquisitions is challenging (see
Fig.1). Conversely, problem specific aspects related to high-res acquisition can
help restoration. First, high-quality low-resolution (low-res) images (e.g. 1 mm3)
can be acquired rapidly. These provide coarse level prior information for restora-
tion. However, low-res does not provide enough information for restoring fine
scale structures. Second, similarity of anatomy across individuals can comple-
ment the short-comings of low-res acquisitions as prior information. Previously
acquired high-quality low/high-res image pairs of different subjects provide em-
pirical prior that can help link different resolutions and guide restoration.

This article presents a restoration method that aims to reduce the number of
acquisitions required to obtain a high-quality high-res MRI. It integrates low-res
acquisition and a training database of pairs of high-quality low/high-res images
in a probabilistic formulation. This method shares similarities with dictionary-
based methods for denoising, such as [7, 12]. However, the proposed method does
not learn a dictionary to integrate the database into the restoration. Instead, it
builds on a patch-based synthesis framework, which has been successfully used
in super-resolution [15], image analogies [10] and synthesis [16]. Experimental
results on five subjects demonstrate the capabilities of the method for achieving
noise levels that would normally require more acquisitions. The proposed method
improves SNR and CNR, revealing fine-scale structures. Comparisons with the
state-of-the-art non-local means denoising algorithm illustrate the advantages of
the proposed method for restoring high-res MRI.

2 Restoration Method

We model an MRI image, I, as a mapping from space to intensity values, i.e.,
I : Ω → R, where Ω ⊂ N3 is a discrete domain. A high-res MRI acquisition,
H̃m, is a noisy version of an ideal noise-free high-res image H. The current
approach for restoring H from a set {H̃m}Mm=1 is the point-wise averaging x ∈ Ω:
Ĥ(x) =

∑
m H̃m(x)/M , which requires M to be as high as 7 or 8 to overcome the

severe noise levels, for e.g. 0.5 mm resolution. Following, we present a restoration
method that aims to reduce the required M .
Probabilistic Model: The inputs of the proposed method are: i) the high-res
acquisitions, {H̃m}Mm=1; ii) the corresponding high-SNR low-res image, L, regis-
tered and up-sampled with tri-linear interpolation to the same grid as H̃m’s; and
iii) a training database of coupled high-SNR low/high-res images {(Lq, Hq)}Qq=1,
previously acquired, from different subjects. The goal of the algorithm is to
estimate the high-SNR high-res image H, denoted by Ĥ.

The proposed method works on image patches. A patch of size d ∈ N in
an image I at location x is the set of intensities over the neighborhood voxels,



i.e., Id(x) , {I(y) : y ∈ W d(x)}, where W d(x) , {y : ‖x − y‖∞ ≤ d} is the
neighborhood of x. For instance, W 1(x) is the set that includes x and its 26
immediate neighbors, and I1(x) are the set of intensities within W 1(x).

We estimate each patch in Ĥ by maximizing the posterior probability:

Ĥd(x) = argmax
Hd(x)

p(Hd(x)|Ld(x), {H̃d
m(x)}) = argmax

Hd(x)

p(Hd(x), Ld(x), {H̃d
m(x)})

= argmax
Hd(x)

p(Ld(x), Hd(x))
∏
m

p(H̃d
m(x)|Hd(x)}). (1)

To reach (1), we assumed (i) p(H̃d
m(x)|Hd(x), Ld(x)}) = p(H̃d

m(x)|Hd(x)}), i.e.,
in the presence of H, image L provides no additional information about each
Hm; and (ii) p({H̃d

m(x)}|Hd(x)}) =
∏
m p(H̃

d
m(x)|Hd(x)}), i.e., each low-SNR

image Hm is conditionally independent given H.
We further assume the following Gaussian noise model: p(H̃d

m(x)|Hd(x)}) =
N
(
Hd(x), σnI

)
, where N (·, ·) represents the normal distribution and I is the

identity matrix. The reasons for this choice are two-folds. First, empirically we
observed that the noise distribution for each high-res acquisition can be well
approximated with a Gaussian (see Fig. 1). Second, point-wise averaging is the
solution of the model that ignores p

(
Ld(x), Hd(x)

)
in Equation 1. This second

point links the proposed method to the current practice.
The key component of the proposed method is p(Ld(x), Hd(x)). There are

multiple ways of defining this term. One could, for example, use a parametric
form that models subsampling. Without anatomically informed priors, however,
this approach would fail to model structures that are only visible at high-res.
As a result, unless these structures are prominent in the noisy acquisitions, they
cannot be restored. For brain MRI, an alternative approach is to leverage the
anatomical similarities between individuals by using available training datasets.
Here, we take this approach and use the training database {(Lq, Hq)}Qq=1 to
estimate the joint distribution p(Ld(x), Hd(x)) using a non-parametric model:

p
(
Ld(x), Hd(x)

)
=

1
Q|WD(x)|

Q∑
q=1

∑
y∈WD(x)

KΣ

(
Ld(x), Ldq(y)

)
KΣ

(
Hd(x), Hd

q (y)
)

(2)
where WD(x) is the D-neighborhood of x, |·| denotes set cardinality, KΣ (I, J) =
exp

{
− 1

2 (I − J)TΣ−1(I − J)
}
/
√

2πdet(Σ), Σ(x1,x2) = σ2 exp
{
−‖x1 − x2‖22/α2

}
and det(·) is the matrix determinant. Σ models the spatial correlation in the
residuals and has two global parameters, σ and α. More refined parameteriza-
tions can also be used, for example by assigning locally varying parameters. In
that case, however, the estimation of the parameters becomes more challenging.
In Eq. 2, the summation over the voxel index y allows us to consider patches at
voxels other than x. This enriches the training data used for voxel x and models
misalignments between the subjects.
Optimization: To solve Eq. 1 with the definition of Eq. 2, one can use nu-
merical methods such as Expectation Maximization. This, however, becomes



computationally intractable because a separate iterative optimization needs to
be run at each voxel x, and the summation over all training patches can be
expensive when the training dataset is large (e.g. when D is large). As a first
order approximation we propose to use

p
(
Ld(x), Hd(x)

)
≈ max
q,y∈WD(x)

KΣ

(
Ld(x), Ldq(y)

)
KΣ

(
Hd(x), Hd

q (y)
)
. (3)

This type of approximation can be justified when the dimensionality of the
problem is high and the training samples are sparse. In Eq. 3, in the same spirit
as k-means clustering, the new image is associated with the closest training patch
and the probability value is computed solely based on this association. The main
advantage of adopting Eq. 3 is that it converts the problem given in Eq. 1 to

argmax
Hd(x)

{
max

q,y∈WD(x)
KΣ

(
Ld(x), Ldq(y)

)
KΣ

(
Hd(x), Hd

q (y)
)∏
m

p(H̃d
m(x)|Hd(x)})

}
,

(4)
which can be solved efficiently. We observe that for a fixed q and y, the outer
optimization of Eq. 4 yields a closed-form solution:

Ĥd
q,y(x) =

(
M

σ2
n

I + Σ−1

)−1
(

1
σ2
n

I
M∑
m=1

H̃d
m(x) + Σ−1Hd

q (y)

)
. (5)

This reduces the problem in Eq. 4 to solving:

argmax
q,y

KΣ

(
Ld(x), Ldq(y)

)
KΣ

(
Ĥd
q,y(x), Hd

q (y)
)∏
m

p
(
H̃d
m(x)|Ĥd

q,y(x)
)
.

Combining the last two terms and Eq. 5, we can rewrite this as:

q∗,y∗ = argmax
q,y

KΣ

(
Ld(x), Ldq(y)

)
KΣ+Iσ2

n/M

(
1
M

M∑
m

Hd
m(x), Hd

q (y)

)
(6)

and the final estimate is given as Ĥd(x) = Ĥd
q∗,y∗(x).

Equation 6 can be solved using the powerful patch-matching procedure bor-
rowing ideas from patch-based segmentation systems [6]. Following the brain-
specific strategy as given in [6] we linearly align the new subject data L, {H̃m}
with each training subject {(Lq, Hq)} via affine registration, and perform exhaus-
tive search over a restricted spatial neighborhood, WD(x). The cost of searching
over WD(x) can be reduced by employing a multi-resolution grid pyramid.

The presented method restores Ĥd(x) for each x independently. Ĥd(x) con-
tains the intensity estimates for x and all its neighbors in W d(x). We com-
pute the final estimate Ĥ(x) by averaging the estimates from all the patches
containing x. The interactions between neighboring voxels could alternatively
be modeled as a prior distribution over H. This, however, would remove the
possibility of solving each Hd(x) independently, which enables parallelization.
Variation on the Model: A variation of the presented model is to remove the



dependence on Ld(x) and only model p(Hd(x), {H̃d
m(x)}). This case corresponds

to only using the high-res acquisitions and the high-res images in the database to
restoreH. In this case, most of the derivations follow suit and the restoration pro-
cess reduces to solving q∗,y∗ = argmaxq,y KΣ+Iσ2

n/M

(
1
M

∑M
m Hd

m(x), Hd
q (y)

)
,

where the restored image patch is computed as Ĥd(x) = Ĥd
q∗,y∗(x).

Setting the Parameters: The probabilistic model has five free parameters,
σn, σ, α, d and D. The first three we set using heuristic strategies. We first
assume the noise variance σn is constant across subjects, i.e., the noise prop-
erties remain similar across images. Thus we can directly estimate σn on the
training dataset, where each Hq is associated with multiple low-quality acqui-
sitions {H̃q,m}. We estimate σn as the square root of the mean square dif-
ference between Hq and {H̃q,m} on the training dataset. σ and α values de-
fine the influence domain of each kernel in the non-parametric distribution in
Eq. 2. For a given subject, we estimate these parameters based on the high-
SNR low-res images Ld(x) and {Ldq(x)}. We first compute the following empir-

ical covariance matrix S = 1
N

∑
xn

(
Ld(xn)− Ldq∗n(y∗n)

)(
Ld(xn)− Ldq∗n(y∗n)

)T
,

where (q∗n,y
∗
n) = argmaxq,y

∥∥Ld(x)− Ldq(y)
∥∥

2
, using N randomly selected vox-

els xn ∈ Ω. We then determine σ and α by minimizing the square difference
between Σ(·, ·) and the sample covariance S. d and D are set empirically.

3 Experiments

We tested the proposed restoration method on a dataset of five subjects. For
each subject, seven high-res T1w images at a resolution of (500µm)3 and one
low-res T1w image at the resolution of 1 mm3 were acquired on a 3T Siemens
Trio scanner with a 3D encoded MPRAGE using a 32-channel receive coil. The
protocol took 7 minutes to acquire each high-res image and 3.5 minutes to acquire
the low-res images. Fig. 1-(a-c) show, for a subject, the low-res image, a high-
res acquisition and the average high-res image, respectively. Fig. 1-d plots the
histogram of the difference between each high-res acquisition shown in (c) and
the average of seven shown in (b), “the noise distribution”, along with the best
fitting Gaussian distribution in red.

We performed leave-one-out experiments, where for each test case the im-
ages of the remaining subjects were used to construct the corresponding training
database. We used two different ways to construct the training database high-res
images: i) by averaging the seven high-res acqusitions (set1) and ii) by first aver-
aging then denoising the average image by the non-local means (NLM) algorithm
as proposed in [5] (set2). For each test case, we performed seven restorations,
where for each restoration we assumed a different number, M , of high-res low-
SNR scans. The restoration quality is quantified using two measures, SNR and
CNR, which are computed based on the claustrum: a fine scale structure that is
only visible in the high-res. Two regions-of-interests were drawn on the average
of seven high-res acquisitions, one within the claustrum and another within the
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Fig. 1. (a) T1w image at 1 mm3 resolution (b) T1w image at (500 µm)3 acquisition
(c) Average of seven (500 µm)3 images (d) Histogram of the difference between (b)
and (c), and overlayed is the best fit Gaussian distribution to the histogram.

external capsule, which borders the claustrum (see Fig. 3-a). SNR was computed
as the ratio of the average intensity value to the standard deviation within the
claustrum ROI. CNR was computed as the absolute difference of mean intensities
of the two ROIs divided by the combined standard deviation.

We tested three variants of the proposed model: (i) “model HL” uses both L
and H̃m for the test images and set1 type training database, (ii) “model H” uses
only H̃m and set1 type database, and (iii) “model HLD” uses both L and H̃m

and set2 type database. We used a patch size of d = 1 and ran patch-matching
in a multi-resolution pyramid of three levels at resolutions (2 mm)3, 1 mm3 and
(500 µm)3 with a search neighborhood of D = 8 mm, 4 mm, 2 mm, respectively.
We compared the restoration quality of the proposed method with four bench-
mark methods: (i) the point-wise averaging, (ii) block-wise NLM [5] (NLMBO),
(iii) oracle-based DCT filter [13] (ODCT) and (iv) pre-filtered rotationally in-
variant NLM [13] (PRINLM) all applied to the point-wise averaging result1 The
noise level estimations for the latter three methods were performed using the
method proposed in [4] and all the parameters were set as suggested in [13].

Fig. 2 plots the results with respect to M (and acquisition times correspond-
ing to each M in paranthesis). The bars correspond to average values obtained
over five test cases and the errorbars are the standard errors. In terms of SNR,
model HLD achieved the highest values for all M . The highest CNR values were
obtained by HLD for M < 4 and NLMBO for M ≥ 3. The high CNR and SNR
values achieved by the models HL and HLD demonstrate that the proposed ap-
proach can drastically reduce noise and improve contrast simultaneously. The
differences between models H and HL show that the integration of the low-res
image is advantageous. Considering acquisition times, the proposed methods, in
particular model HLD, provides substantial benefits for low M .

Fig. 3 displays visual results from two subjects: (a) slices of high-res images
and the ROIs (blue = claustrum, red = external capsule) and (b) restoration
results of NLMBO, HL and HLD for M = 1, 3. These images demonstrate that
depending on the noise level NLM might not be enough. The proposed models
HL and HLD are able restore the image even in high noise levels. e.g. M = 1.

1 The implementations for (ii-iv) are from http://personales.upv.es/jmanjon/denoising/prinlm.html.
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Fig. 2. Quantitative restoration results vs. number of acquisitions and acquisition times
in minutes: (a) SNR at the ROI drawn on the claustrum, see Fig. 3, (b) CNR computed
between the claustrum and the external capsule. The bars are mean statistics over 5
subjects and errorbars are standard errors.

4 Conclusions

In this work we proposed a restoration method for improving the quality of high-
res MRI acquisitions. Our experiments demonstrate that the method is able to
reduce the severe noise levels and improve the contrast between neighboring
fine-scale structures. The method achieves this by leveraging low-res images and
a training database, which provides an empirical prior on the appearance of
structures at different resolutions. The preliminary results are promising and
suggest the possibility of reducing the number of acquisitions needed to obtain
high-quality high-res MRI at higher-field strengths.
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Fig. 3. Visual results: (a-left) Two different subjects’ high-res images zoomed around
the claustrum (left). (a-right) ROIs (blue = claustrum, red = external capsule). (b)
Restored images: (left to right) averaging, NLMBO and the proposed models.
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