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Abstract. Determining disease-related variations of the anatomy and
function is an important step in better understanding diseases and devel-
oping early diagnostic systems. Machine-learning based medical image
analysis methods provide valuable tools to determine such variations.
In particular, image-based multivariate prediction models and “relevant
features” they produce are attracting attention from the community.
In this article, we present an empirical study on the relevant features
produced by two recently developed discriminative learning algorithms:
neighborhood approximation forests (NAF) and the relevance voxel ma-
chine (RVoxM). Specifically, we examine whether the sets of features
these methods produce are exhaustive; that is whether the features that
are not marked as relevant carry disease-related information. We per-
form experiments on three different problems: image-based regression
on a synthetic dataset for which the set of relevant features is known,
regression of subject age as well as binary classification of Alzheimer’s
Disease (AD) from brain Magnetic Resonance Imaging (MRI) data. Our
experiments demonstrate that aging-related and AD-related variations
are widespread and the initial sets of relevant features discovered by the
methods are not exhaustive. Our findings show that by knocking-out fea-
tures and re-training models, a much larger set of disease-related features
can be identified.

1 Introduction

Image-based prediction models hold great promise for improving clinical prac-
tice. The ability to predict the state of a disease based on its anatomical and
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functional signatures opens up new avenues for early diagnostic systems. To this
end, great progress has been made in developing accurate prediction tools. In
particular, multivariate discriminative learning models have been successfully
employed both for image-based classification and regression.

Furthermore, medical images provide in-vivo observations that reveal the
disease-related variations of the anatomy and function. Comparing images of
healthy controls and patients can highlight such variations on a macro-scale
that would be difficult to identify using histopathology. This is essential for
improving our understanding of disease and refining the predictive power of
learning methods.

Supervised image-based prediction models have started to play an impor-
tant role in determining regions that exhibit disease-related variations. These
models determine a set of regions, also referred to as “relevant features”, on
which measurements are pertinent to achieve good prediction accuracy. The
statistical significance of the predictions, i.e. that they are different than a ran-
dom guess, suggests that such sets of relevant features indeed carry information
about disease-specific changes. Although this is a good starting point, an im-
portant question remains: Do the methods produce exhaustive sets? That is,
does the set of relevant features reflect most of the variation associated with
the disease-specific effects? Recent work has focused on constructing prediction
models aiming to determine relevant sets [1] and developing efficient statistical
tests for creating maps of relevant regions [2]. To the best of our knowledge, no
previous work has analyzed the question whether the set of regions not chosen
as “relevant” by prediction models exhibit any disease-specific changes. Here, we
empirically study this issue.

This article presents a set of experiments with two different image-based
prediction models: neighbourhood approximation forests (NAF) [3] and the rel-
evance voxel machine (RVoxM) [1]. Both of these methods have been used to
perform image-based classification and regression; both methods offer a way
to quantify feature relevance for prediction. We designed an experimental setup
that aims to answer whether the relevant features provided by these models form
an exhaustive set. Using this setup we performed experiments on three different
datasets: synthetic, OASIS [4] and ADNI4. The first two are image-based regres-
sion tasks, while the last one is a classification task. We present the experimental
setup, briefly describe the methods and present experimental findings.

2 Experimental Design

Our experimental design relies on the following observation: if the set of relevant
features is exhaustive, then removing it from the pool of measurements should
result in a set of features that contains no information about the disease. Con-
sequently, an image-based prediction model trained on this non-informative set,
should be as predictive as a random prediction model, i.e. prediction should not

4 For detailed information, visit http://www.adni-info.org/



Feature Set = Entire feature set of measurements;
iteration = 1;
while iteration < Total Number of Iterations && #(Feature Set) != 0 do

Train on the training set using Feature Set;
Compute accuracy on the test set;
Perform random permutation tests on the trained prediction model;
Compute the most relevant features;
Knockout - remove the most relevant features from Feature Set;
iteration++;

end
Algorithm 1: Pseudocode for the experimental design

be statistically significant. Based on this consideration, we designed an iterative
setup. At the first iteration, we learn a prediction model using a training dataset
and the entire set of measurements available. We first record the relevant features
suggested by the method and then compute the model’s accuracy on a separate
test dataset. We then perform random permutation tests as suggested in [5];
we randomly permute the labels in the test set and recompute the prediction
accuracies using the trained model. Based on the random permutation tests, we
compute the statistical significance of the prediction model at that iteration, i.e.
percentage of random permutations achieving better accuracy than the trained
model. For the second iteration we “knock-out” the relevant features, i.e. re-
move them from the feature set, and retrain the model on the remaining set of
measurements. Then we repeat the same procedure multiple times. Algorithm 1
presents the pseudocode for this procedure.

3 Materials

3.1 Algorithms

We represent images as feature vectors x, where each x is a concatenation of
measurements taken from different locations within the image, e.g. intensities.
The quantities to predict are denoted as y for the regression tasks and as c for
the binary classification tasks. Both methods we consider are supervised; they
use a training database {xn, (y, c)n}N1 to learn the prediction model. Below, we
briefly describe each method.
Neighbourhood Approximation Forests (NAF) Neighbourhood approxi-
mation forests [3], a variant of random decision forests [6], is a supervised dis-
criminative learning method that uses tree-based approximate nearest neighbour
search. During the training phase NAF learns sequences of axis aligned binary
tests on the feature space that approximate the neighbourhood structure in-
duced by a user-defined distance on the labels. Once learning is complete, for
a test image x, NAF computes its predicted label by identifying the “closest”
M training images and using their labels. The prediction model combines these



labels by weighting them based on the approximate affinities of the training im-
ages to the test one as computed by NAF. As a decision forest based system,
various feature relevancy measures can be used with NAF [7, 8]. Here, we adopt
“selection frequency”, freq(xi), which basically counts the number of times each
element xi is used within the learned forest. Ordering freq(xi) provides a rela-
tive “importance” measure to each element in x. For further details on NAF, its
parameters and the selection frequency we refer the reader to [3] and [7, 8].
Relevance Voxel Machine (RVoxM) Relevance voxel machine [1], a variant
of relevance vector machine (RVM) [9], is a sparse learning algorithm. The pre-
diction model is linear: y(x,w) =

∑M
i=1 wixi = wT x, were w is a weight vector

that is optimally sparse. In RVoxM, the algorithm learns w for a training dataset
by optimizing a cost function that is a combination of the data likelihood and a
prior model that encourages sparsity and spatial clustering of features. RVoxM
is applied to regression tasks as ŷ = wT x and to binary classification tasks as
p(c = 1) = σ(wT x), where σ(·) is a sigmoid function mapping scalars to class
probabilities. In the training phase, RVoxM computes the optimal sparse w vec-
tor. During prediction, only the corresponding elements in the feature vector x
contribute and therefore, these elements are the “relevant” features of the model.
For further details on RVoxM we refer the reader to [1].

3.2 Data

Synthetic Data - Image-based regression In the first experiment, we used
NAF and RVoxM on a synthetic dataset for an image-based regression prob-
lem, where the ground truth set of relevant pixels is known. Our aim with this
dataset is to test the validity of the experimental design described in Section 2.
The dataset contains images synthetically generated from an underlying natural
image. Each image is composed of 121 7 × 7 non-overlapping patches, where
the intensities of each patch are computed by multiplying a 2D Gaussian kernel
centered at the patch center with the intensities of the underlying image. The
magnitude of each kernel is drawn uniformly from the interval [−1, 1]. We fur-
ther add normally distributed iid white noise to the images to achieve an SNR
of 20dB. For each image we assign the kernel magnitude of the 50th patch as the
variable of interest. Figure 1 shows the relevant pixels, some example images and
the corresponding scalar values. The feature vector x for each image contains
the intensity values of all pixels, i.e. 5929 values. In this fashion, we constructed
10 different datasets each containing 400 training and 40 test images.
OASIS - Image-based regression In the second experiment, we used the
methods for image-based regression of subject age on the publicly available cross-
sectional Open Access Series of Imaging Studies (OASIS) [4]. We used structural
brain MRI (T1-weighted) scans of 414 healthy subjects that were processed with
the FreeSurfer software suite [10, 11] and transferred to a common coordinate
system via affine registration. From the skull-stripped and normalized brains
at resolution 2 × 2 × 2 mm3, we randomly sampled 15,613 intensity values for
computational efficiency and used those as our features. We randomly chose 100



Relevant Pixels y = 0.73 y = −0.70 y = −0.79 y = −0.51

Fig. 1. Images from the synthetic dataset. Left-most: ground truth relevant pixels.
Right: four example images with their corresponding scalar variables.

of the 414 subjects as a test set and used the remaining 314 for training; we
repeated this procedure ten times.
ADNI - Image-based classification In the last experiment we used NAF
and RVoxM for image-based classification of Alzheimer’s Disease (AD)of the
publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset5.
Our analysis used MRI scans from 180 AD patients and an age and sex-matched
group of 180 controls. We processed all MRI scans with the FreeSurfer soft-
ware suite and computed subject-specific models of the cortical surface as well
as thickness measurements across the entire cortical mantle [12]. Subject-level
thickness measurements were then transferred to a common coordinate system,
via a surface-based nonlinear registration procedure [13]. For computational effi-
ciency, we utilized the left-hemisphere of the fsaverage5 representation, consist-
ing of 10,242 vertices. We smoothed the cortical thickness maps with a Gaussian
kernel with a full-width-half-maximum of 5 mm. To evaluate our algorithms,
we conducted a ten-fold cross-validation. First we divided the data into 10 sub-
groups (of 18 patients and 18 controls); then during each fold, one patient and
one control subgroup were set aside as the test set, while the rest of the data
were used for training.

4 Results and Discussions

On the datasets described above we performed the iterative experiment as ex-
plained in Section 2. For RVoxM we let the algorithm converge during the train-
ing phase, which produced a set of relevant features. At each iteration of the
experiment these relevant features were knocked-out. For NAF, the selection
frequency provided an ordering for all features. At each iteration of the experi-
ment, we knocked out the top 3% (1% for the synthetic dataset) of the features
with respect to the selection frequency ordering. For each experiment, at each
iteration we computed: i) prediction accuracies, ii) 1000 random permutation
tests (100 permutations for each fold) and iii) p-values of the prediction accu-
racies with respect to the permutation tests. As prediction accuracies, we used
root-mean-square error (RMSE) for the regression tasks and misclassification
5 For detailed information, visit http://www.adni-info.org/



rate for the classification task. The p-values were computed with respect to the
average accuracy obtained over different folds of the same experiment.

Figure 2 summarizes the results. For each experiment we provide two graphs.
The first one plots the prediction accuracy with respect to % of features that
were knocked-out. The solid lines are the average accuracies obtained in our 10
fold experiments and the error bars correspond to standard deviations and stan-
dard errors. The same plot also presents the average statistics on the accuracies
obtained during the random permutation tests. The second graph plots the % of
features knocked-out vs. the p-values with respect to random permutation tests.

The results for the experiments on the synthetic dataset (first column in
Figure 2) demonstrate the validity of our experimental design. After the first
few iterations, the trained prediction models for both algorithms behave the
same way as random permutation tests. This means both algorithms identified
all the relevant pixels in the first few iterations and in the latter iterations the
models are trained on non-informative pixels only. To validate this, we computed
the least common set of relevant pixels at each iteration by intersecting the sets
of knocked-out pixels over the different folds. Figure 3(a) plots the % of ground
truth (GT) relevant pixels identified by the least common feature sets. Indeed
we see that both algorithms discover all the relevant pixels and after that point
both prediction models lose their significance.

The experimental results for the age regression problem on the OASIS dataset
display a different behavior than the synthetic experiments. The prediction
model remains significant (p < 0.01) until the point, where we knocked-out 96%
of the total number of features for NAF and 83% of the features for RVoxM.
This indicates that over 80% of the features might carry information for pre-
dicting subject age, which is not surprising since the effect of age is expected
to be widespread. Furthermore, the accuracies of the prediction models decrease
with each knock-out suggesting that the algorithms can make better use of some
regions in the brain to perform predictions than others.

The results for the AD classification problem on the ADNI dataset show a yet
different type of behavior. The prediction models remain significant until 66%
of the features are knocked-out for NAF and 75% for the RVoxM. This suggests
that the effect of AD is also widespread across the cortex. But in contrast to
the age regression problem, the accuracy changes faster in the first iterations
of the experiment. This suggests that there is a small set of features, which
the algorithms can exploit substantially better for prediction. The difference is
striking between the first and the second iteration of the experiments using NAF.

The plots given in Figure 2 demonstrate that the set of relevant features
suggested by image-based prediction algorithms, such as RVoxM, might not be
exhaustive. For NAF and other forest-based methods, there is no obvious way
to determine a set of relevant features without using an ad-hoc threshold like
the 3% value we used. Nevertheless, observing the plots we can say that the
set of most frequently used features in NAF might not capture the entire set of
relevant ones. In Figures 3(b) and (c) we visualize this behavior for NAF and the
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Fig. 2. Graphs show how prediction models change with respect to % of feature knock-
out. For each experiment we plot two graphs: i) accuracy change and ii) p-values with
respect to random permutation tests. Results for synthetic experiments demonstrate
that both models identify the grunt truth relevant features in the first few iterations
and after that point prediction model becomes similar to random prediction (p >
0.5). Results for age regression and AD classification demonstrate that majority of the
features are informative about the effect of interest. Only after knocking out more than
70% of the features p-values for the prediction models become p > 0.05.

RVoxM, respectively. The top rows display the regions which were suggested as
relevant by the algorithms at the first iteration of the experiment. The bottom
rows display the regions which were knocked-out to achieve prediction models
that are not significant anymore. We would like to emphasize that these latter
images are not necessarily displaying exhaustive sets either.

One important aspect our experiments have shown is the importance of
knocking-out features and retraining. Image-based prediction models aim to



achieve good accuracies; and not necessarily to capture the entire set of rele-
vant features. As a result, it is not trivial to interpret the features suggested as
relevant by these methods. Thus, we believe the knock-out/retrain strategy is
crucial in understanding feature relevance for image-based prediction models.
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Fig. 3. (a) % of ground truth relevant pixels identified by the methods in the synthetic
experiments. (b) Knocked-out features in NAF - in the first iteration (top) and until
the point NAF prediction became non-significant (bottom). (c) Same maps for RVoxM.

5 Conclusions

In this article, we presented an empirical study of feature relevance for image-
based prediction models. The main question we wanted to answer was whether
sets of relevant features suggested by image-based prediction models form an
exhaustive set of all features that carry information on disease-specific changes.
Our experimental findings demonstrate that this is not necessarily the case in
aging and AD. Furthermore, our results show that the knock-out/retrain strat-
egy employed in our experimental design can be critical in understanding and
interpreting feature relevance for image-based prediction models.
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