
Chapter 19
Entanglement and Differentiable Information
Gain Maximization

A. Montillo, J. Tu, J. Shotton, J. Winn, J.E. Iglesias, D.N. Metaxas,
and A. Criminisi

Decision forests can be thought of as a flexible optimization toolbox with many
avenues to alter or recombine the underlying architectural components and improve
recognition accuracy and efficiency. In this chapter, we present two fundamental
approaches for re-architecting decision forests that yield higher prediction accuracy
and shortened decision time.

The first is entanglement, i.e. using the learned tree structure and intermediate
probabilities computed in nodes closer to the root to affect the training of other
nodes deeper in the trees. Unlike more conventional classifiers which assume that all
data points (even those neighboring in space or time) are IID, the entanglement ap-
proach learns semantic correlation in non IID data. To demonstrate, we build an en-
tangled decision forest (EDF) that exploits spatial correlation in human anatomy by
simultaneously labeling voxels in computed tomography (CT) scans into 12 anatom-
ical structures.

The second contribution is the formulation of information gain as a function that
is differentiable with respect to the parameters of the split node weak learner. This
provides increased confidence and accuracy of maximum margin boundary localiza-
tion and reduces classification time by using a few, shallow trees. We further extend
the method to incorporate training label confidence, when available, into the infor-
mation gain maximization. Due to bagging and random feature subset selection,
we can retain decision forest virtues such as resiliency to overfitting. To demon-

A. Montillo (B) · J. Tu
General Electric Global Research, Niskayuna, NY 12309, USA

J. Shotton · J. Winn · A. Criminisi
Microsoft Research Ltd, Cambridge, UK

J.E. Iglesias
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

D.N. Metaxas
Rutgers, Piscataway, NJ, USA

A. Criminisi, J. Shotton (eds.), Decision Forests for Computer Vision and
Medical Image Analysis, Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-4929-3_19, © Springer-Verlag London 2013

273

http://dx.doi.org/10.1007/978-1-4471-4929-3_19

274 A. Montillo et al.

strate, we build a gradient ascent decision forest (GADF) that tracks visual objects
in videos. For both approaches, superior accuracy and computational efficiency is
shown in quantitative comparisons with state of the art algorithms.

19.1 Introduction

As discussed in Part I of this book, decision forests are a flexible framework for
addressing diverse tasks, with many avenues to alter or recombine the underlying
architectural components to improve accuracy and efficiency. In this chapter, we
present two fundamental approaches for re-designing the decision forest. These lead
to improved prediction accuracy, increased confidence and accuracy of maximum
margin boundary localization, and reduced decision time and memory requirements
for real world applications including semantic segmentation of 3D medical images
and tracking objects in video.

19.2 Entangled Decision Forests

Our first approach, a re-architecting of decision forests, is the entanglement or shar-
ing of information between the nodes in a decision forest. In entangled decision
forests, the result of the binary tests applied at each tree node depends on the re-
sults of tests applied earlier during forest growth. This concept was first presented
in [252] and later refined with context selectivity [250]. This chapter presents a more
general exposition than reported previously, enabling the most broad interpretation
and application.

Entanglement is the use of the learned tree structure and intermediate probabil-
ities associated with nodes in the higher levels of a tree to affect training of split
nodes in deeper levels of the forest. In its simplest incarnation one may think of en-
tanglement as using the class posteriors of previously trained nodes as input feature
into the training of subsequent nodes in the same tree.

A traditional assumption of many classifiers is that all data points (e.g. pixels in
an image) are independent and identically distributed (IID). However, in many appli-
cations, this assumption is incorrect; many data points are in fact highly correlated
and thus non IID. Entanglement automatically learns the semantic structural pattern
of this correlation and encodes it in the features chosen during decision tree training.
In practice, this correlation tends to occur over time, space or both. For example, in
3D medical image segmentation, human anatomy defines a canonical 3D configu-
ration (correlation) over 3D space. In other cases, such as 4D medical scans, the
correlation can be in both space and time (the fourth dimension). In entanglement,
a tree node, j , at level, �, in the forest is constructed by designing entanglement
features that exploit the uncertain partial contextual information learned (or at test
time, inferred) in a correlation neighborhood by the previous � − 1 levels of the for-
est (already trained). We call a forest that uses such features an entangled decision
forest (EDF).

19 Entanglement and Differentiable Information Gain 275

As an additional contribution, we randomly sample feature types and parameters
from learned, non-uniform proposal distributions rather than from a uniform dis-
tribution used (implicitly) in previous decision forest research [5, 44, 77, 128, 212,
341, 411]. With this modification in place, the random draws from the proposal
distribution select, with greater probability, the feature types and parameters that
tend to be relevant for classification. As we will demonstrate, this allows for higher
accuracy for the same number of features evaluated during training. Entanglement
and learned proposal distributions allow faster training, and faster, more accurate
prediction.

To illustrate entanglement, we discuss an example application where we wish to
automatically segment a 3D Computed Tomography (CT) scan into its anatomical
components such as the aorta, pelvis, and the lungs. We cast this task as a voxel
classification problem which we solve via an EDF. In this case entanglement allows
the class posteriors of voxels reaching nodes deep in the tree to depend directly from
the intermediate posteriors attained higher up in the same tree. This improves accu-
racy and captures long-range semantic context. Previously, segmentation constraints
in the form of semantic (e.g. anatomical) context have been applied, but these have
required either a separate random field [342] or multi-pass processing [341, 375];
EDFs achieve this in one pass with no additional methods.

19.2.1 Entanglement Feature Design

We assume we are given a set, S = {(v, c)}, of voxels, v = (i,p), each consisting of
its image intensity, i, (a measure of tissue density in the case of CT) voxel location
p and ground truth label, c. This set is formed from the collection of voxels from
a group of training CT scans. Our goal is to infer the probability of each label for
each voxel of unseen test scans.

Following the work in [78] we construct two types of long-range, context-aware
feature. The first type captures “appearance context”, the latter are entangled and
capture “semantic context”. See also Chap. 15. Details are explained next.

19.2.1.1 Appearance Features

Using the intensity image, J , we construct intensity features for each voxel v that
are spatially defined by (1) their position, p, centered on the voxel to be labeled
(Fig. 19.1a), and (2) one or two cuboidal probe regions, F1 and F2, offset by dis-
placement vectors, Δ1 and Δ2, which can be up to 200 mm in each dimension
(x, y, z). A probe region, F(q;w), is the set of voxels within the region centered
at q with side lengths, w. We construct two variants of intensity features. The first
variant consists of the mean CT intensity at a probed region, F1 (Fig. 19.1a, left),
while the second consists of the difference in the mean intensity of regions, F1 and

276 A. Montillo et al.

Fig. 19.1 Intensity and entanglement features. (a) Intensity features measure image information
from regions offset from the reference voxel at p. (b) MAPCLASS feature retrieves the label that
the classifier currently predicts at location p1 offset from p. We maintain a node index array which
associates with each voxel the current tree node ID (represented by the number in each voxel). (c,
top) The array allows to determine the current label posterior in the tree for the voxel at location
p1. (c, bottom) Conceptually, the tree induces a vector image of class posteriors which we use
when designing MAPCLASS and TOPNCLASSES features

F2 (Fig. 19.1a, right). Then split functions are defined from these as follows:

hINTENSITY(v, θ j) = [
J̄
(
F1(p + Δ1)

)
> τ

]
, (19.1)

hINTENSITYDIFF(v, θ j) = [
J̄
(
F1(p + Δ1)

) − J̄
(
F2(p + Δ2)

)
> τ

]
. (19.2)

During training, each type of split function is characterized for node j by the split
parameters θ j = (φ, τ). For hINTENSITY, φ includes the parameters of F1: the offset
Δ1, the size w1 and an intensity threshold τ . For hINTENSITYDIFF, φ includes the
additional parameters Δ2 and w2. These parameters are sampled randomly during
training for each split node. Once training has finished, the maximum information
gain node test along with its optimal features are frozen and stored within the node
for later use during testing.

19.2.1.2 Semantic Context Entanglement Features

We now describe an instance of our entanglement contribution. During testing on
novel images, we exploit the confident voxel label predictions (peaked distributions)
that can be found using early levels of the forest to aid the labeling of nearby voxels.
This provides semantic context similar to auto-context [341, 375], but does so within
a single forest. We define four types of long-range entanglement feature to help train
the node currently being grown using knowledge learned in already trained nodes
of the forest. Two features (MAPCLASS and TOPNCLASSES) are based on the
posterior class distribution of the nodes corresponding to probed voxels, and two
(NODEDESCENDANT and ANCESTORNODEPAIR) are based on the location of the
nodes within the trees.

19 Entanglement and Differentiable Information Gain 277

Fig. 19.2 Further entanglement features. (a) Node index array associates voxels with intensity and
tree node indices (same format as Fig. 19.1b but for a deeper tree level). (b) NODEDESCENDANT

feature tests whether probe voxel at p1 descends from a node (j0 in this case). (c) ANCESTORN-
ODEPAIR feature tests whether the nodes of voxels p1 and p2 have a common ancestor < τ levels
away

MAPCLASS Entanglement Features As the name suggests, this type of feature
uses the maximum a posteriori label of a neighboring voxel at p1 to reduce uncer-
tainty about the label at p (Fig. 19.1b). When such semantic context is helpful to
classify the voxel at p, the feature yields high information gain and may become
the winning feature for the node during tree growth. The MAPCLASS split function
tests whether the MAP class in the posterior of a probed voxel p1 = p +Δ1 is equal
to a particular class c�:

hMAPCLASS(v, θ j) =
[
arg max

c
p
(
c; j (p1)

) = c�
]
. (19.3)

The parameter θ j includes φ = (Δ1, c
�) while p(c; j (p1)) is the posterior class

distribution of the node of p1 denoted j (p1). This posterior can be retrieved from
the tree because (1) we train and test voxels in breadth-first fashion, and (2) we
maintain an association between voxels and the tree node ID at which they reside
while moving down the tree. This association is a node index array (Fig. 19.1b).

TOPNCLASSES Entanglement Features Similarly we define features, called
TOPNCLASSES, where N ∈ {2,3,4}, that generalize the MAPCLASS feature.
A TOPNCLASSES feature tests whether a particular class c� is in the top N classes
of the posterior class distribution of the probe voxel at p1 = p + Δ1. The split func-
tion, with parameter θ j including φ = (Δ1,N, c�) is defined as

hTOPNCLASSES(v, θ j) = [
c� ∈ top N classes of p

(
c; j (p1)

)]
. (19.4)

NODEDESCENDANT Entanglement Features This type of feature tests whether
a region near voxel p has a particular appearance. The neighboring region is centered
at voxel p1 (Fig. 19.2a, b). The split test is whether the node currently corresponding
to p1 descends from a particular tree node, j0. If it does, then we know p1 has
satisfied the appearance tests at nodes (j1 . . . jk) above j0 in the tree in a particular
way to arrive at j0.

278 A. Montillo et al.

ANCESTORNODEPAIR Entanglement Features This type of feature tests
whether two regions near voxel p have passed similar appearance and semantic
tests. The neighboring regions are centered at voxels p1 and p2 (Fig. 19.2a). The
split test is whether the nodes currently corresponding to p1 and p2 have their first
common ancestor < τ tree levels above the current level (Fig. 19.2c). The thresh-
old controls the required degree of similarity: the lower τ , the greater the required
appearance and context similarity needed to pass the test, because the lower τ , the
larger the number of tests with identical outcomes above the common ancestor.

19.2.2 Guiding Feature Selection by Learned Proposal
Distributions

This section describes the use of learned proposal distributions. These distributions
aim to match the feature types and their parameters proposed at each tree node
during training to those that have proven to be most useful for classification in a
previous training run. The decision forest still chooses the winning feature, but each
node chooses from features sets that are likely to be useful based on prior expe-
rience. Specifically, we train an initial decision forest, Ftemp, on our training data,
using a uniform proposal distribution. We then record (as histograms) the distribu-
tion of accepted feature parameters and feature types across all tree nodes in the
forest. Ftemp is then discarded, and we then use parameter distributions as the pro-
posal distributions in a subsequent training of the next decision forest. While this
requires additional training, it imposes no time penalty for prediction. This process
could be repeated, though in practice even just one iteration has proven sufficient
for a substantial improvement in accuracy (e.g. > 5 %).

The learned displacements tends to be Gaussian distributed and centered on the
reference voxel (Fig. 19.3 top row). Acceptance distributions of the remaining pa-
rameters, such as the thresholds τ or the choice of the MAPCLASS class c�, also
have non-uniform distributions (Fig. 19.3 bottom row). Similarly, the distribution
of feature types for each tree level is learned. Drawing feature types from this dis-
tribution can also improve classifier accuracy. Figure 19.4a shows how the ratio of
feature types varies with tree depth. As the tree is grown, entanglement features in-
creasingly dominate the scene over the more conventional intensity features. The
entangled features used by the nodes in the lower part of the tree exploit semantic
context and neighborhood consistency inferred from appearance features of earlier
levels.

19.2.3 Results

We evaluate our EDF model on the task of segmenting a database of 250 varying
field of view CT scans. Each voxel in each CT scans needs be assigned one of 12
class labels from the following set of anatomical structures of interest {heart, liver,

19 Entanglement and Differentiable Information Gain 279

Fig. 19.3 Learned parameter distributions are clearly non-uniform. (Left) Learned displacement
and anatomical class distributions for MAPCLASS feature. (Right) Displacement and intensity
difference distributions for INTENSITYDIFF feature

Fig. 19.4 An EDF reveals how and what it has learned. (a) Learned relative proportion of feature
types chosen at each level of forest growth. (b) Location and organ class of the top 50 features
used to identify heart voxels. The hand-drawn regions here group these locations for different
MAPCLASS classes c�

spleen, aorta, l./r. lung, l./r. femur, l./r. pelvis, l./r. kidney} or the background class.
This database has been designed to include wide variations in patient health status,
field of view and scan protocol. We randomly selected 200 volumes for training and
50 for testing.

Qualitative Results The EDF achieves a visually accurate segmentation of
organs throughout the 50 test volumes. Example segmentations are shown in
Fig. 19.5a where the first column is the ground truth segmentation, and the sec-

280 A. Montillo et al.

Fig. 19.5 Qualitative segmentation results. (a) The use of entanglement and learned proposal
distributions (column 2) improves accuracy compared to not using them (column 3). The rows
show four different subjects. (b) EDF segmented left lung distorted by enlarged aorta; volume
rendering in lower right. (c) EDF accurately segments a right lung despite a severe tumor

ond column is the EDF result. We see good agreement for the lungs (blue), liver
(orange), spleen (green), kidneys (purple), femur (tan), and heart (dark brown). Col-
umn 3 shows the result using our decision forest without entanglement and with
uniform proposal distributions. Entanglement with proposal distributions noticeably
improves the lungs, aorta (red), kidneys, spleen, femur, and heart.

The algorithm handles many complexities commonly found in the clinic. For
example, our algorithm correctly segmented the lung despite the case of a severely
enlarged aorta (Fig. 19.5b) and another with a tumor (Fig. 19.5c).

Quantitative Impact of Each Contribution For a quantitative analysis we mea-
sured segmentation accuracy across all 50 test scans using the average class Jaccard
similarity coefficient [100]. The metric is the ratio of the intersection size (ground
truth and predicted labels) divided by the size of their union. While EDF achieves
> 97 % average voxel accuracy throughout our database, we use the Jaccard metric
because we feel it is a more reliable metric of segmentation accuracy.

To understand the impact of using the acceptance distributions as proposal distri-
butions (Sect. 19.2.2), we trained the decision forest in four different ways: (1) using
uniform feature type and uniform feature parameter distributions for baseline per-
formance (light blue curve, Fig. 19.6a), (2) using learned feature type distribution

19 Entanglement and Differentiable Information Gain 281

Fig. 19.6 Quantitative impact of each contribution. (a) Learning proposal distributions for both
feature types and feature parameters increases accuracy. (b) Entanglement (dark blue) provides
greater accuracy and prediction speed than auto-context (green). Note: the green curve should
properly be plotted at depths 20–38, but for ease of comparison we plot it at depths 1–19

with uniform feature parameter distributions (red), (3) using uniform feature type
distributions with learned feature parameter distributions (green), (4) using learned
feature type and learned parameters distributions (dark blue). Learning only the fea-
ture type distribution yields a negligible improvement to baseline (red vs. light blue).
Learning feature parameter distribution boosts accuracy significantly (green vs. red).
Learning both yields the best performance boosting accuracy over baseline by 8 %.

We compared our method to auto-context [341, 375] by conducting four exper-
iments. First, we trained our decision forest 20 levels deep without entanglement
and without auto-context for a baseline (red, Fig. 19.6b). Second, we trained a two-
round, auto-context decision forest (ADF) using 10 levels in each round (light blue).
Third, we trained another ADF, but this time with an equal modeling capacity to the
baseline by using two rounds with 19 levels each (green). Fourth, we trained the
proposed EDF method as a single, 20 level deep forest using entanglement (dark
blue curve). We find considerably better accuracy using the EDF method (dark blue
vs. green). In addition to beating the performance of ADF, it reduces the prediction
time by 47 % since the EDF requires 18 fewer levels (20 vs. 38).

Efficiency Considerations With a parallel implementation, EDF segments vol-
umes (512×512×424) in just 12 seconds per volume using an 8 core Xeon 2.4 GHz
computer with 16 GB RAM. This speed is equal to or better than state of the art sin-
gle organ methods [419], yet we segment multiple (12) organs simultaneously.

Inspecting the Chosen Features Figure 19.4b shows how the MAPCLASS fea-
ture learns to segment a heart voxel located at the cross-hair. To find the top con-
tributing semantic context features, we express information gain as a sum of the
information gain from each class:

I (S, θ) =
∑

c∈C

(
−p(c|S) logp(c|S)+

∑

i∈{L,R}

(|S i |
|S| p

(
c|S i

)
logp

(
c|S i

)
))

, (19.5)

282 A. Montillo et al.

where S is the set of voxels being split into partitions SL and SR, and c is the index
over classes. We can then readily rank the learned node features based on how much
they contributed to classifying the voxels of a given class (e.g. heart) by increasing
the information gain for that class.

19.3 Differentiable Information Gain Maximization

In Sect. 19.2 we simultaneously increased classification accuracy and reduced de-
cision time using entanglement which propagates knowledge from one part of the
forest to another. In this section we achieve a similar result using a complementary
approach. This second approach optimizes training by applying gradient ascent to
differentiable information gain. Finding the optimum parameters for the split tests
has traditionally [302] been achieved via exhaustive discrete search to find those
parameters which maximize information gain. For a given computational budget,
exhaustive search is limited to a small region of parameter space or a coarse quanti-
zation of a wider region.

By making information gain differentiable, we can directly find the optimal data
partition for the given input subset and node feature subset. This produces more
compact decision trees which in turn reduces classification (test) time and memory
requirements. Through the use of random input (bagging) and feature subset selec-
tion, decision forest virtues including independent trees and resiliency to overfitting
can be retained.

Using non-differentiable information gain, an optimal solution can be found
by simulated annealing techniques [158, 260], though this can be computation-
ally impractical in high dimensional feature spaces. Alternative discriminative cri-
teria could be optimized, such as LDA [246], SVM [383], or boosting techniques
[374, 413], but these may not provide the optimal data partitions when the data
distributions are from many classes.

As discussed in Sect. 3.3, binary tests based on parameterized functionals (such
as hyperplanes or conic sections) are stronger learner models than coordinate
aligned split functions, and can have greater generalization capabilities. We show
below that our differentiable information gain forest both accepts these more pow-
erful split functions and improves their generalization power to approximate the
maximum margin decision boundary (see also [80] for a detailed discussion about
maximum margin behavior in decision forests). Like [173], we impose a soft split
using a sigmoid function; however, we explicitly present the derivation absent in
[173], and extend it to include label confidence when training data include label un-
certainty. We also incorporate hyperplane and non-linear split tests in the gradient
ascent framework.

We call the resulting classifier a gradient ascent decision forest (GADF) and il-
lustrate its power in both synthetic and real-world examples. First, we investigate the
impact of the GADF for a synthetic 2D classification task, and demonstrate that gra-
dient ascent reduces classification time, increases prediction accuracy and increases

19 Entanglement and Differentiable Information Gain 283

confidence in the estimation of the maximum margin decision boundary, compared
to the standard decision forest. Second, we implement a GADF to solve classifica-
tion problems in several application domains including mass spectrometry, biome-
chanics, botany, image classification and 1D signal processing. We demonstrate how
the GADF approach increases prediction accuracy across this application spectrum.
Third, we cast visual object tracking as an iterative classification task and train a
gradient ascent classifier to perform object tracking in public PET videos. We show
how the approach avoids tracker drift and handles severe occlusions better than state
of the art trackers.

19.3.1 Formulating Differentiable Information Gain

Given the labeled dataset S = {(v, c)} of size N , where v is the feature data of
dimension d , and c = ς(v) is the ground truth class label of v (with c ∈ {1, . . . ,C}),
the Shannon entropy of the class distribution can be computed as

H(S) = −
C∑

c=1

p(c|S) logp(c|S), (19.6)

where

p(c|S) =
∑

v[ς(v) − c]
N

(19.7)

defines the data class distribution and [·] is the indicator function.
Given a binary split function (weak learner) h(· , ·), we can partition the data into

two subsets (see Sect. 3.2.3):

SL = {S|h = 1} = {
(v, c)|v ∈ S, h(v; θ) = 1

}
(19.8)

of size NL and

SR = {S|h = 0} = {
(v, c)|v ∈ S, h̄(v; θ) = 1 − h(v; θ) = 1

}
(19.9)

of size NR = N − NL. The information gain defines the entropy change before and
after the split h is applied:

I (S|h) = H(S) − H(S|h), (19.10)

where the entropy after partitioning is computed as

H(S|h) = NL

N
H

(
Sh

) + NR

N
H

(
S h̄

)
. (19.11)

Information gain is a typical measure for selecting discriminative weak learners in
decision tree training as described in Chap. 3. However, the information gain for-
mulation is not differentiable w.r.t. the parameters θ of h, making analytical opti-
mization problematic.

284 A. Montillo et al.

To make I (S|h) in (19.10) differentiable w.r.t. the binary test h, we first define
the split function h for data point v as a parameterized functional:

hψ (v; θ) =
{

0, ψ(v; θ) < 0,

1, ψ(v; θ) ≥ 0,
(19.12)

where ψ(v; θ) is the geometric split function of feature space with parameter set θ .
The partition occurs at the boundary ψ(v; θ) = 0.

We then define partition integrals for each class for all data w.r.t. h as follows:

US
c (h) =

∑

v

h(v; θ)
[
ς(v) − c

]
, c ∈ {1, . . . ,C}, (19.13)

US(h) =
∑

v

h(v; θ), (19.14)

where h(v; θ) can be replaced with h̄(v; θ) = 1 − h(v; θ) as needed.

We can then define NL = US(h), NR = US(h̄), N = NL+NR, pc(Sh) = US
c (h)

US (h)

and pc(S h̄) = US
c (h̄)

US (h̄)
, and the entropy after partition by h is

H(S|h) = − 1

N

(∑

c

US
c (h) logUS

c (h) − US(h) logUS(h)

+
∑

c

US
c (h̄) logUS

c (h̄) − US(h̄) logUS(h̄)

)
. (19.15)

Using the chain rule, the derivative of information gain w.r.t. θ is

∂I

∂θ
= −∂H(S|h)

∂θ

= 1

N

(∑

c

U ′S
c (h)

(
logUS

c (h) + 1
) − U ′S(h)

(
logUS(h) + 1

)

+
∑

c

U ′S
c (h̄)

(
logUS

c (h̄) + 1
) − U ′S(h̄)

(
logUS(h̄) + 1

))
, (19.16)

where U ′S
c (h) = ∑

v
∂h(v;θ)

∂θ [ς(v) − c], c ∈ {1, . . . ,C}, and U ′S(h) = ∑
v

∂h(v;θ)
∂θ .

Information gain is not differentiable w.r.t. the binary test parameter θ because
hψ (v; θ) in (19.12) is not differentiable. To make it differentiable, we approximate

the weak learner h by a sigmoid function hψ (v; θ) = 1/(1 + e
−ψ(v;θ)

σ) to get:

∂hψ (v; θ)

∂θ
= 1

σ
hψ (v; θ)

(
1 − hψ (v; θ)

)∂ψ(v; θ)

∂θ
. (19.17)

Combining (19.16) and (19.17) allows us to compute the derivative of informa-
tion gain w.r.t. the binary test function parameter θ using the chain rule. The split

19 Entanglement and Differentiable Information Gain 285

function ψ(v; θ) can be designed according to the purpose of information gain op-
timization. It is worth noting that the parameter σ defines the fidelity of the binary
test, and controls the smoothness of the information gain surface in the decision
boundary parametric space. One may apply annealing to σ when doing gradient
ascent (i.e. letting σ → 0) so that the chance that the optimization reaches global
maxima can be increased.

Soft Label Decision Forests If each training data point v also includes a (train-
ing) class label probability measure qc(v), then we define a confidence score
γ (v) ∈ [0,1] as a function of the label log-likelihood l(v) = log(

qc(v)
1−qc(v)

) as follows:

γ (v) = 2

1 + e
−

√|l(v)|−tl
σl

. (19.18)

The intuition is that the label is less confident if the class probability ratio is too
close to 1 (and thus

√|l(v)| approaches zero), and σl controls how sensitive the
confidence score is to the log-likelihood-ratio score. Such class label probability
measures occur naturally in tasks such as video processing. In this case an on-line
model learning may be applied per frame. Given the classification model trained
on-line using the previous frames, the new observations in the current frame may
be labeled with likelihood confidence (soft labels), and become the training data for
the on-line model updating for the current frame. In [52], such ‘soft label decision
forests’ are used for on-line tracking in videos where labels are quantized into a
histogram and a standard node training procedure is applied.

We provide an analytic solution for the soft label decision forests learning prob-
lem. By modeling the label confidence measures based on how much the label like-
lihood deviates from the decision threshold, we derive a differentiable information
gain formulation weighted by the label confidence. Our gradient ascent optimization
technique can then be applied to find the optimal data split based on the informa-
tion gain criteria with respect to the known class labels. Specifically, to optimize
the information gain with emphasis on data v labeled with high confidence, we can
simply derive the differentiable information gain by weighting the terms in (19.13)
with the confidence measure:

US
c (h) =

∑

v

h(v; θ)
[
ς(v) − c

]
γ (v), c ∈ {1, . . . ,C}, (19.19)

US(h) =
∑

v∈S
h(v; θ)γ (v). (19.20)

19.3.2 Split Function Design and Gradient Ascent Optimization

In training a classification forest, we solve for a decision boundary, ψDF(S; θDF),
optimally partitioning the data S with maximal information gain:

286 A. Montillo et al.

Fig. 19.7 Gradient ascent can improve the location and confidence in the maximum margin de-
cision boundary and reduce classification time. Top row: discrete optimization using: (a) 1 tree,
(b) 10 trees, (c) 100 trees. Bottom row: discrete optimization followed by gradient ascent opti-
mization using: (d) 1 tree, (e) 10 trees, (f) 100 trees

θ∗
DF = arg max

θDF

I
(
S|h(v; θDF)

)
, (19.21)

where θDF is the concatenated vector of the binary test parameters θ at each tree
node.

The classic decision forest [44] uses a univariate split test, which consists of a
threshold τ of the kth feature element of v. We can denote this partitioning bound-
ary function as ψ = g0(v; θ) = vk − τ with θ = θ0 = {k, τ }. Such a boundary is
well suited for fast discrete search via maximizing I . However, the boundary co-
ordinate alignment in feature space can require many binary tests to make the joint
decision boundary ψDF(S; θDF) approximate the maximum margin class separation
boundary (as discussed in Chap. 3). An alternative is to approximate the maximal
margin decision boundary using far fewer but stronger weak learner models, such
as hyperplanes or conic functions, and this is especially true if differentiable infor-
mation gain is used. This is vital since maximum margin fidelity is likely to endow
the forest with superior generalization properties.

To illustrate, Fig. 19.7 shows synthetic 2D data points from three classes (red,
yellow, green) and the resulting partitions of a 2D feature space (x1, x2) by different
decision forests architectures. The top row shows the results of applying a conven-
tional classification forest. The bottom row shows the results (for corresponding for-
est size) of a classification forest using our differentiable information gain. While it
has been shown in [80] (and in Chap. 4) that when a large number of trees are used
the maximum margin class boundaries can be found, in practice, a small number
of trees is typically preferred for either classification runtime efficiency or memory
constraints. A comparison between the two rows in Fig. 19.7 shows that our new
formulation of information gain allows forests to approximate maximum margin

19 Entanglement and Differentiable Information Gain 287

behavior accurately even with just a few trees. In fact, in each column, showing the
results on various number of trees, we see an improvement in the maximum margin
boundary.

In detail, Fig. 19.7a shows the result of a decision forest with 1 tree and oriented-
line weak learners. We observe that the decision boundary does not approximate
well the maximum margin decision boundary. Averaging the output of 10 trees,
Fig. 19.7b, starts to improve the location of the class boundary. Using 100 trees
Fig. 19.7c provides a reasonable approximation to the maximum margin location
and a smooth transition class posterior.

Using gradient ascent optimization yields improved location of the class bound-
ary even for just one tree (Fig. 19.7d). Here, the method is initialized with the result
from Fig. 19.7a. Figure 19.7e shows the result when the output from 10 gradient as-
cent trained trees are averaged. Compared to Fig. 19.7b we can see the confidence in
the correct maximum margin boundary location is improved and a smoother poste-
rior. Similarly, when the output from 100 gradient ascent trained trees are averaged
in Fig. 19.7f, an improvement in the confidence of the correct maximum margin
decision boundary is still observed.

The improvement in maximum margin fidelity obtained by using GADF can pro-
vide additional generalization when training data are limited, which is often the
case in practice. The use of fewer trees also substantially speeds up classification
time, since each gradient ascent trained tree does not require additional time to test
yet provides increased accuracy. For example, the gradient ascent based result in
Fig. 19.7e has similar maximum margin fidelity to the non-gradient ascent result
in Fig. 19.7c yet requires 10 times fewer trees. In additional 2D synthetic tests we
have also observed a large capture range (basin of convergence) for both oriented
hyperplane and conic weak learners when using GADF.

With this motivation for differentiable information gain, we derive the gradient
of two useful binary tests for gradient ascent as follows:

Hyperplane Partition Binary test functionals in the form of hyperplanes for the
training of decision forest can be defined as ψ(v; θ) = g1(v; θ) = θ�[v

1

]
where θ =

θ1 = [θ(1), θ (2), . . . , θ (d+1)] ∈ R
d+1 may be directly incorporated into the proposed

gradient ascent information gain optimization where we can show that

∂ψ

∂θ
=

[
v
1

]
. (19.22)

Hyper-Ellipsoid Partition Binary tests with hyper-ellipsoid split functionals in
R

d can be defined as ψ(v; θ) = g2(v; θ) = 1 − (v − v0)
�Q(v − v0) where v0 is the

ellipsoid center, and Q defines the semi-axes lengths and orientations. To incorporate
into our gradient ascent information gain optimization, we have

∂ψ

∂v0
= −2(v − v0)

�Q and
∂ψ

∂Q
= (v − v0)(v − v0)

� (19.23)

with the optimization subject to Q> 0.

288 A. Montillo et al.

To train each node using gradient ascent information gain optimization, an initial
estimate of the split function parameters can be chosen by random guess or discrete
optimization in discrete parameter space. For example, for hyperplanes we find the
best simple binary test with parameter θ∗

0 = {k∗, τ ∗} by discrete search and then set

the initial guess θ1 = [0, . . . ,0, θ
(k∗)
1 = 1,0, . . . ,−τ ∗]�. Given the formulation and

initial guess, we can conveniently implement the gradient ascent optimization by
adopting existing off-the-shelf gradient ascent optimization toolboxes (i.e. fmin-
unc() in Matlab with default options).

19.3.3 Object Tracking via Information Gain Maximization

Reliable visual tracking of a target object is difficult as many confusing factors need
to be addressed including: occlusions, distractions from background clutter, and ob-
ject appearance variations. We cast object tracking as an iterative classification prob-
lem [9, 11, 139, 178], and model the on-line appearance model update and tracking
as a sequential process of information gain maximization that partitions the pixels in
feature space (image features) and in image space (incorporating pixel coordinates
as additional features) iteratively. Various decision forest based visual trackers have
been proposed in the literature. A popular approach is to use classification forests
to construct an appearance likelihood model that is updated on-line in the current
frame and evaluated for the next frame. Tracking is achieved by finding the maxima
of the confidence map for the next frame by picking the centroid. As shown in [317],
the on-line decision forest model based visual tracker consistently outperformed that
based on an on-line Adaboost model. In [120], the concept of Hough forests is pro-
posed. With Hough forests, the target center is detected and tracked by the fusion of
generalized Hough transforms that are based on the codebook classification of lo-
cal image patches. Also, Chap. 12 and Chap. 16 provide further forest-based video
tracking algorithms.

Our approach is substantially different from the previous approaches. We con-
sider the tracking as an information gain maximization process (Gain-Max tracking)
in pixel XY-coordinate space. By parameterizing the target shape with an ellipsoid,
the tracking of the target location and scale can be achieved by maximizing the dif-
ferentiable information gain via gradient ascent techniques. We note that while we
train a forest for each frame, the amount of data is small and thus a forest can be
trained quickly. Realtime computation can be achieved by sacrificing some model
optimality (i.e. limiting the number of trees), or by adopting on-line decision forest
learning techniques [317].

Given an image J , we define a region of interest as Ω(J) and denote the target re-
gion as Ω+(J) and background region Ω−(J) such that Ω(J) = Ω+(J)∪Ω−(J).
The pixel feature vector at location p is a d dimensional vector denoted J (p) ∈ R

d

where J has channels for textures, RGB colors, gradients, and wavelets. We denote
target and background pixel labels as {F,B}. We use information gain maximiza-
tion in two ways: first, to learn to discriminate foreground from background based

19 Entanglement and Differentiable Information Gain 289

on pixel appearance (feature space) and second, to track the target in the pixel XY-
coordinate space (image space). These are explained next.

GainMax in Feature Space: Updating the Appearance Model To discriminate
foreground from background pixels, we train a two-category pixel classifier that
assigns pixels with a label from {F,B}. When information gain maximization is
achieved, solving (19.21) the classifier learns the image features that best separate
the training data: SJ = {(J (p), ς(p)) | p ∈ Ω(J), J (p) ∈ R

d, ς(p) ∈ {F,B}} into
foreground and background. The features are computed directly from the image
while the target and background labels come from a prior frame (the initial frame
is assumed manually labeled). For example, we can obtain the label of the pixel at
location p as

ς(p) =
{
F if p ∈ Ω+(J),

B if p ∈ Ω−(J).
(19.24)

GainMax in Image Space: Tracking the Target Further optimization of the
foreground and background is possible if we take into consideration each pixel’s
XY-coordinates in image space in addition to the pixel foreground and background
labels output from the previous step’s two-category classifier. We denote such
a training dataset as SΩ(J) = {(p, ςDF(J (p))) | p ∈ Ω(J)} where {ςDF(J (p)) ∈
{F,B} | p ∈ Ω(J)}. To solve, we find the optimal partition boundary hψ (p; θ∗)
that achieves maximal information gain. Intuitively, the optimal split function
ψ(p; θ∗) = 0 should match the target region boundary. The solution can again be
found by solving (19.21) using gradient ascent, but with the target boundary func-
tion being parameterized based on the predefined target shape model, i.e. a 2D el-
lipsoid. As {ςDF(J (p))} is estimated by the on-line trained classification forest in
feature space with probability qς (J (p)), we can perform tracking by optimizing the
confidence weighted information gain formulation derived in (19.15) and (19.19).

19.3.4 Results

19.3.4.1 Classification of Public Machine Learning Datasets

To evaluate the gradient ascent decision forest (GADF), we compare its performance
to those of commonly used classifiers including a reference standard Adaboost im-
plementation and a decision forest with oblique hyperplanes. We denote these clas-
sifiers as follows:

Adaboost A standard Adaboost classifier that uses axis-aligned stumps as decision
functions. This is used as a baseline reference for comparison.

StumpDF A standard decision forest classifier with an oblique hyperplane for the
binary test. The optimal binary test is searched by randomly drawing 20 hyperplane
samples in the feature space.

290 A. Montillo et al.

Table 19.1 Comparison of classification equal-error rate for Adaboost, StumpDF and GADF on
public datasets

Dataset Name #sample # fea. #Train:#Test Adaboost StumpDF GADF

Arcene 200 10000 1:1 0.25 0.318 0.240

Vertebral Column 310 6 3:7 0.157 0.175 0.170

Iris 150 2 1:4 0.281 0.010 0.000

Cardiotocography 2126 23 3:7 0.021 0.022 0.019

Breast Cancer
Wisconsin

569 32 1:1 0.056 0.048 0.043

GADF Similar to the StumpDF, but gradient ascent information gain optimization
is also used during training, using the hyperplane with best performance of the ran-
domly drawn 20 planes. Assuming the data are always normalized into standard
deviation along each dimension, we do gradient ascent information gain optimiza-

tion by gradually reducing the annealing parameter σ starting from 0.03
1√
d (where

d is the feature dimension of the data) with multiplicative scaling factor 0.7. The
annealing stops when the optimization converges.

We train both StumpDF and GADF with 10 trees and we train the trees by ran-
domly sampling 90 % of the original training set. When training each tree node, we
search for the optimal split parameters in a randomly sampled feature subspace with
dimension number ceil(

√
d). We limit the maximal tree depth to 15. To evaluate the

three methods, we compare their performance over a variety of different applica-
tion domains using publicly available standard datasets used throughout the ma-
chine learning community [111, 377]. We select five datasets, including: Arcene
(where the application is mass spectrometry), Vertebral Column (biomechanics),
Iris (botany), Cardiotocography (1D signal processing), and Breast Cancer Wis-
consin (cell image classification). We used the given train and test datasets when
they are explicitly provided and divide the dataset into different ratios to evaluate
generalization, as shown in Table 19.1, when they are not given. We also reduced
Iris to only the first two features to make the test more challenging. The table sum-
marizes the classification equal-error rates for the three methods, averaged over five
experimental runs for each method. We observe that in nearly every case, GADF
outperforms StumpDF as well as the reference standard Adaboost.

19.3.4.2 Object Tracking in Videos

In Sect. 19.3.3 we embedded GADF into a full-fledged tracking application. Here
we compare its performance to the mean-shift tracker [69]. For the video data we
used a standard object tracking PET video as the evaluation task [290]. We evaluated
three variants of our GADF based tracker. For all our variants the tracker begins
by learning a two-category foreground/background pixel classifier (an appearance
model) using the manually delineated first frame. Characteristics of the trackers we
compare are as follows:

19 Entanglement and Differentiable Information Gain 291

Fig. 19.8 GainMax trackers using gradient ascent information gain maximization can handle dis-
traction and occlusions well. For the mean-shift tracker (column 1), the red box is the tracking
result; for GainMax trackers 0–2 (columns 2–4), red indicates pixels correctly labeled in the ellip-
soid as target (true positive), blue indicate false positive pixels outside of the target ellipsoid

MeanShift The standard mean-shift tracker with histogram of size 9 by 9 by 9 bins
in RGB space.

GainMax0 The appearance model from the first frame is reused on all frames.
Gradient ascent is used to refine the tracking boundary in image space.

GainMax1 Training data are updated to use background pixels from the previous
frame and target pixels from the first frame. Then the two-category pixel classifier
is retrained and the tracking boundary is refined using gradient ascent for tracking
in both image and pixel feature space.

GainMax2 Training data are updated to use the previous frame’s target and back-
ground pixels. Then the two-category pixel classifier is retrained and the tracking
boundary is refined using gradient ascent for tracking in both image and pixel fea-
ture space.

For the three different variants of GainMax tracking, we fix the number of trees to
20, and the depth of the trees to be 10. We train the decision forest by randomly
sampling 80 % of the pixels as training data for each tree, and randomly choose
four features from [r, g, b,ΔXx,ΔXy,‖ΔX‖,∠ΔX] for the training of the binary
test functionals.

Some qualitative results are shown in Fig. 19.8, in which a woman turns her head
around in an office environment, and then a second person enters and occludes the

292 A. Montillo et al.

Fig. 19.9 The average
tracking/ground truth box
overlap ratio for the lady
video

woman. Tracking is also challenging because the wall has nearly human skin color.
We observe that Meanshift and GainMax0 cannot handle the substantial variations
in target appearance as they do not do model updating. They are eventually dis-
tracted and fail to track. GainMax1 and GainMax2 both maintain correct tracking
of the lady even over the wall because their appearance models are updated on-line
in the pixel feature space and learn to distinguish the face color from wall color.
By comparison, GainMax2 works better when there is no occlusions. However, it
is easily distracted by the occlusion. However, GainMax1 can resist this distrac-
tion successfully because it does not update the target pixel data, and can maintain
tracking to the end of the video.

Given the ground truth target bounding box Bg and the tracking bounding box
Bt in a frame, we can evaluate the tracking performance by their average box over-
lapping ratio w.r.t. the boxes: R(Bg,Bt) = (

Ω(Bg∩Bt)

Ω(Bg)
+ Ω(Bg∩Bt)

Ω(Bt)
)/2. In Fig. 19.9

we plot the average overlap ratio of the four trackers on the lady video.
We can further summarize the tracker’s accuracy by the percentage of frames in

which R(Bt ,Bg) > 0.5. Figure 19.10 summarizes the performance of the four eval-
uated trackers on three videos commonly used for evaluation in visual tracking. Due
to substantial appearance variations, occlusions and background distractions, Mean-
shift and GainMax0 get distracted easily as they do not perform model updating.
GainMax2 can achieve high tracking accuracy when there is gradual appearance
variations (as shown in Fig. 19.9), but fails to track when occlusions exist. Over all,

% (R > 0.5)
lady [135] view5 [291] mall [57]

Meanshift 0.66 0.46 0.55
GainMax0 0.43 0.47 0.42
GainMax1 0.85 0.92 1.00
GainMax2 0.82 0.47 1.00

Fig. 19.10 Robustness comparison of the visual trackers by the percentage of frames with
R(Bt ,Bg) > 0.5

19 Entanglement and Differentiable Information Gain 293

GainMax1 achieves the best robustness as it does model updating while avoiding
drifting.

19.4 Discussion and Conclusion

This chapter has presented three complementary improvements to the decision for-
est framework presented in this book.

Entanglement propagates knowledge from one part of the forest to another which
speeds learning, improves classifier generalization, and exploits long-range spatial
correlations in the input data.

Differentiable information gain maximization allows the optimal data partition-
ing functional to be found directly through gradient ascent rather than through an
exhaustive search over discrete functional parameter space.

Entanglement and differentiable information gain maximization enhance differ-
ent aspects of decision forests: the use of semantic contextual features and the node
optimization function, respectively; they are mutually compatible and may be com-
bined to further enhance the forest accuracy.

The learned proposal distributions (Sect. 19.2.2) and differentiable information
gain maximization both tackle the problem of node optimization in the presence of
a high dimensional feature space. The former increases the effectiveness of brute-
force feature search. The latter optimizes the information gain more directly. Since
differentiable information gain requires initialization, these two methods can be
combined effectively.

The fundamental enhancements presented here may be directly applied to im-
prove results in other applications that use classification forests, including multiple
sclerosis lesion segmentation [125], brain segmentation [411], myocardium delin-
eation [212], and more generic object class segmentation tasks [342]. Here we have
applied entanglement only to the task of anatomy segmentation, but it is a generic
concept and may be adapted to exploit other correlations (e.g. over time or space).
Likewise our differential information gain approach can form the basis for gradi-
ent ascent optimization with more complicated data partitioning functionals (e.g.
differentiable shape models) based on a-priori heuristics for specific applications.

	Chapter 19: Entanglement and Differentiable Information Gain Maximization
	19.1 Introduction
	19.2 Entangled Decision Forests
	19.2.1 Entanglement Feature Design
	19.2.1.1 Appearance Features
	19.2.1.2 Semantic Context Entanglement Features
	MAPClass Entanglement Features
	TopNClasses Entanglement Features
	NodeDescendant Entanglement Features
	AncestorNodePair Entanglement Features

	19.2.2 Guiding Feature Selection by Learned Proposal Distributions
	19.2.3 Results
	Qualitative Results
	Quantitative Impact of Each Contribution
	Efﬁciency Considerations
	Inspecting the Chosen Features

	19.3 Differentiable Information Gain Maximization
	19.3.1 Formulating Differentiable Information Gain
	Soft Label Decision Forests

	19.3.2 Split Function Design and Gradient Ascent Optimization
	Hyperplane Partition
	Hyper-Ellipsoid Partition

	19.3.3 Object Tracking via Information Gain Maximization
	GainMax in Feature Space: Updating the Appearance Model
	GainMax in Image Space: Tracking the Target

	19.3.4 Results
	19.3.4.1 Classiﬁcation of Public Machine Learning Datasets
	19.3.4.2 Object Tracking in Videos

	19.4 Discussion and Conclusion

