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a b s t r a c t

When using functional brain imaging to study neuropsychiatric patients an important challenge is

determining whether the imaging task assesses individual differences with equal precision in healthy

control and impaired patient groups. Classical test theory (CTT) requires separate reliability studies of

patients and controls to determine equivalent measurement precision with additional studies to

determine measurement precision for different levels of disease severity. Unlike CTT, item response

theory (IRT) provides estimates of measurement error for different levels of ability, without the need for

separate studies, and can determine if different tests are equivalently difficult when investigating

differential deficits between groups. To determine the potential value of IRT in functional brain

imaging, IRT was applied to behavioral data obtained during a multi-center functional MRI (fMRI) study

of working memory (WM). Average item difficulty was approximately one standard deviation below

the ability scale mean, supporting the task’s sensitivity to individual differences within the ability range

of patients with WM impairment, but not within the range of most controls. The correlation of IRT

estimated ability with fMRI activation during the task recognition period supported the linkage of the

latent IRT scale to brain activation data. IRT can meaningfully contribute to the design of fMRI tasks.

Published by Elsevier Ireland Ltd.
1. Introduction

Over the past several decades, item response theory (IRT; Lord
and Novick, 1968; Rasch, 1960) has become the preferred metho-
dology for the study of test and item characteristics. Yet, IRT has
only rarely been applied in neuropsychological research, and almost
never in published functional brain imaging studies. In this paper,
we discuss some of the practical issues researchers are likely to
confront when applying these techniques to functional brain ima-
ging studies. This demonstration is accomplished by applying IRT to
behavioral data obtained during a multi-center functional MRI
(fMRI) study of working memory. Readers wishing a more general
discussion of IRT should consult introductory texts (e.g., de Ayala,
2009; Embretson and Reise, 2000), review papers (e.g., Reise and
Ireland Ltd.

e System, Psychology Service

1, United States.
Waller, 2009; Thomas, 2011), and technical resources (e.g., Baker
and Kim, 2004; van der Linden and Hambleton, 1997).

1.1. Motivation for using IRT in functional brain imaging

Although interesting fMRI studies are being performed under
behaviorally unconstrained conditions (Meda et al., 2012), most of
the studies in the fMRI literature have used cognitive challenge tasks
to probe patterns of brain-activation. Behavioral contributions to the
design of fMRI tasks have focused almost exclusively on the validity
of the task as an apparent assessment of cognitive neuroscience
domains of interest. Once the content validity of items is determined,
item properties such as difficulty and discriminating power are
assumed, often implicitly, to be equivalent across items. When
item difficulty is considered, it typically enters through the manip-
ulation of independent variables, such as memory load or stimulus
visibility, that alter the marginal probability of a correct response
over subgroups of items (Huang et al., 2006; Potkin et al., 2009).
However, item difficulty needs to be considered when designing
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brain activation probes in order to avoid ceiling and floor effects,
especially when studying groups of subjects who perform at different
ability levels (Gur et al., 1992). Difficulty should be matched across
cognitive challenge probes in order to support the attribution of
differential brain response to the different neurocognitive systems
that the probes were designed to evoke (Gur et al., 1992; Snyder et al.,
2011; Spitzer et al., 1996).

These initial applications of psychometric ideas to the design of
brain activation tasks were not developed within an explicit
psychometric framework, although the principles of classical test
theory (CTT) often seem to be assumed. Today, IRT offers an
accessible, advanced set of tools for establishing the precision
and accuracy of individual items (see Embretson and Hershberger,
1999). IRT models involve both individual person parameters and
individual item parameters scaled along the same latent dimen-
sion. This focus results in an explicit model of item and person
characteristics that are differentiated while remaining linked to
each other through a parametric equation. Separation of person
and item parameters allows for invariance of item characteristics
across groups and individuals that differ in ability (Lord, 1980), and
provides an explicit rationale for the use of different items to assess
the same neurocognitive system in diverse groups of patients (e.g.,
adaptive testing methods). IRT also permits the assessment of item
information (similar to the concept of reliability) and standard
error at specific points along the ability spectrum, whereas CTT
would require different reliability studies along arbitrarily quanti-
tized intervals of ability. Measurement precision can be deter-
mined independently for groups and individuals with different
ability levels, as often occurs in functional brain imaging studies of
clinical groups (e.g., Brown and Eyler, 2006).

The primary purpose of using IRT in imaging research is to
evaluate item properties in order to ensure that tests are measur-
ing intended neurocognitive constructs with appropriate difficulty
to detect individual differences in latent ability; a precise approach
to the ideas advocated by Gur et al. (1992). Unfortunately, there are
several obstacles to using IRT in imaging studies; most notably, the
typically large subject samples required to estimate IRT parameters
and questions whether or not the latent abilities estimated in IRT
are related to brain activation. A test of IRT’s practical utility in
imaging research is needed.

1.2. An application of IRT to an fMRI study of working memory

Data come from the East Coast Traveling Subjects (ECTS) study
performed by the Function Biomedical Informatics Research Network
(FBIRN). The aim of the study was to assess the multi-site reliability of
functional imaging data before embarking on a larger multi-center
study of schizophrenia patients. Participants were administered a
working memory task (WMT) designed to detect differential patterns
of brain activation of healthy volunteers and schizophrenia patients
with working memory impairment. The WMT is a forced-choice
delayed visual recognition memory test, permitting the separate
detection of brain processes involved in stimulus encoding, memory
maintenance, and target recognition. The task was presented in the
magnet while images sensitive to blood oxygen level dependence
(BOLD) signals were acquired (see Buxton, 2002).

To model WMT item characteristics, we consider nested ver-
sions of a general IRT model where N examinees respond to J items.
Let Xij¼xij denote the observed response for the ith examinee to the
jth item, where xij¼1 if the response is correct and 0 otherwise.1

The probability of a correct response is approximated by a logistic
1 A more complex model that included a site difficulty parameter was also

investigated. The model poorly converged and did not fit the data better than

models excluding site effects. Consequently no site term was included in

the model.
function of subject ability (yi), item difficulty (bj), item discrimina-
tion (aj), and item guessing (gj) parameters

PðXij ¼ xij9bj,aj,gj,yiÞ ¼ gjþð1�gjÞ
eajðyi�bjÞ

1þeajðyi�bjÞ
ð1Þ

Eq. (1) is commonly referred to as a three-parameter logistic
(3-PL; Birnbaum, 1968) model. The yi parameter reflects the
subject’s standing on the underlying ability that is required for
accurate item responding (e.g., memory). It is an unobservable
characteristic of the examinee that may also be referred to as a
latent factor or trait. The bj or item difficulty parameter makes it
more or less probable that an examinee of a given ability level will
provide a correct response. The aj or discrimination parameter
reflects the weight or relevance of the underlying ability dimension
to the probability of a correct response. The gj or lower-asymptote
parameter conveys the probability that an examinee with infinitely
low ability will correctly respond (often guessing).

IRT models range from simple to complex in both scope and
ease of application. For imaging researchers hoping to use IRT in
their work, it is first necessary to consider what combination of
freely estimated item parameters can be viably attained from
available data. The answer is due, in part, to characteristics of
items, but also practical issues related to sample size. It is
challenging to collect large samples in imaging research due to
cost, time, and access barriers associated with scanning equip-
ment. In the current study, for instance, item responses and
imaging data were collected for 18 participants over nearly 6
months of multisite collaboration at a cost of approximately
$1000 per scanning session, per site. This reduced number of
examinees – which is common in cognitive and imaging research
– can annul the beneficial large sample properties of maximum
likelihood estimators (see Baker and Kim, 2004). It is well known,
for example, that samples sizes should range from several
hundred to several thousand participants for simple to complex
IRT models respectively (de Ayala, 2009; Reckase, 2009). Sample
sizes of r50 can result in biased parameter estimates or fail to
converge, even for simple models (Lord, 1968). Unstable or biased
estimates of item characteristics associated with small sample
sizes are especially troublesome for maximum likelihood and
least squares estimators. Later, we discuss the use of Bayesian
estimators with constraining prior information to improve model
convergence and fit.

As with most imaging data sets, the WMT data structure is a
transpose of the typical psychometric data set. That is, whereas
psychometric data are characterized by a greater number of
subjects than items, the current data are characterized by a
greater number of items than subjects. This is seen as a problem
in IRT, because whereas subjects are typically modeled with just a
single parameter, items are modeled with multiple parameters.
As the ratio of subjects to items grows smaller, it becomes
increasingly difficult to accurately estimate item parameters.

Fortunately, there may be characteristics of items that, when
combined with certain types of estimation procedures, can overcome
this challenge. It is generally known that traction in parameter
estimation can be gained by constraining item characteristics to
single, group values (see Wainer and Wright, 1980). This strategy
works well when individual item parameters show only minor
deviations from the group average, and do not significantly deterio-
rate model fit when held constant. A more general, less stringent
framework for this strategy comes from hierarchical Bayesian model-
ing, where individual items are assumed to be drawn from common
distributions (Levy, 2009). If the properties of these distributions (e.g.,
shape, mean, and variance) are known, or can be assumed based on
experimental control and prior theory, limitations in the estimation of
item properties from observed data can be mitigated. The WMT, like
most cognitive tasks used in imaging research, makes use of highly
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controlled, relatively homogenous stimuli. As will be shown, this
allows for greater use of Bayesian concepts in parameter estimation,
and facilitates IRT modeling of behavioral data used in fMRI research.

1.3. Hypotheses and goals

This study’s aims were to: (a) determine how well IRT model
parameters could be estimated from an unusual, small subject
sample, large item array, multi-site data set; (b) use IRT derived
test standard error functions to investigate the impact of short-
ening the WMT on the precision of ability estimates; and
(c) determine if the latent IRT scale linking ability and item
difficulty was related to brain activation.
2. Method

2.1. Participants

Nine male and nine female, right-handed volunteers were scanned
five times at four magnet sites while performing the WMT (mean
[range], age: 34.44 [23–53] years; education: 17.06 [12–23] years).
Data obtained from these volunteers were in compliance with the
requirements of each participating institution’s Institutional Review
Board. Participants were recruited across a wide educational range;
however, most were better educated and held higher occupation
levels in comparison to the general public (Brown et al., 2011).
Additional enrollment and study requirements are found in Brown
et al. (2011). All participants were recruited at a single site where,
with one exception, they were initially scanned, then sent to a study
site for repeated scans. Scan order was randomized across the four
sites. IRT analyses did not include data from the initial recruitment
scan. Data from the recruitment session were excluded in order to
train out task learning effects consistent with the analytic design of
the complementary multi-site reliability study (Brown et al., 2011).
That is, because subjects tended to develop more effective testing
strategies after the initial assessment, primary response data were
excluded.

2.2. Task

Each 284-s WMT run was divided into passive viewing – fixation,
passive viewing – scrambled pictures, encode, maintain, and recog-
nition periods. During the encode period, participants were asked to
memorize eight line drawings of common objects presented serially
at 2-s intervals. During the recognition period participants were
presented every 2 s with a screen containing two pictures: one from
the previous encode set and one that had not been presented to
the subject during the session. During the maintain period, subjects
were asked to detect the presence/absence of a human face while
neutral or negative valence photographs from the International
Table 1
Results of parameter estimation for models of varying complexity.

Model

# y b a g Priors

1 Individual Individual Individual Group Weak

2 Individual Individual Individual Group Strong

3 Individual Individual Group Group Weak

4 Individual Individual Group Group Strong

5 Individual Group Group Group Weak

6 Individual Group Group Group Strong

Note: ‘‘Individual’’ refers to the estimation of unique parameter values for each subject

items. ‘‘Weak’’ item priors allow estimates to be based on observed data without the

parameter; a, item discrimination parameter; g, item guessing parameter; PSD, poster
Affective Pictures System were presented in order to ensure subject
attention (Lang et al., 2008; Brown et al., 2011); however, data about
the impact of affective valence during the maintenance period on
subsequent recognition were not included in the IRT analyses due to
concerns about model complexity.

WMT items came from a population of 515 line drawings
randomly assigned to study lists. In total, 256 items were
presented at each site, and 1024 items were presented across
all sites. However, more than half of these were repetitions of the
same items administrated across multiple sites (most subjects
were administered 467 total unique items).

2.3. Imaging methods

Detailed descriptions of the structural and functional imaging
protocols are provided by Greve et al. (2011). Time series of the
Tn

2-weighted images were obtained while participants performed
eight runs of the WMT. A gradient echo, single shot echoplanar
image sequence, axial anterior commissure–posterior com-
missure aligned was acquired at each site at 3.34 mm �

3.34 mm in-plane resolution and 4-mm slice thickness with 1-
mm skip. The fMRI time series analysis was performed using FSL’s
FEAT routine to perform a single-voxel general linear analysis of
the Tn

2-weighted image time series (www.fmrib.ox.ac.uk/fsl/feat5/
). See Brown et al. (2011) for further description of the fMRI
processing stream. The imaging data presented below only
compared the MR signal amplitude during the recognition period
against the MR signal acquired during the baseline periods. A high
resolution T1-weighted image was also collected.

2.4. Item and ability parameter estimation

We used Bayesian methods of parameter estimation using
OpenBUGS statistical software for Linux (Lunn et al., 2009) with
Markov chain Monte Carlo methods (MCMC; for details see Fox,
2010; Patz and Junker, 1999; Swaminathan et al., 2003). From the
Bayesian perspective, parameter estimates are viewed as
weighted averages of information that comes from data alone
(likelihoods) and information that comes from prior knowledge
(prior distributions). Prior distributions can be weakly informa-
tive, in which case data have a large impact on parameter
estimates, or strongly informative, in which case data have a
small impact on parameter estimates. We considered three
versions of the IRT model in Eq. (1); each was estimated twice,
once with weakly informative priors and once with strongly
informative priors. The models are listed in the left half of
Table 1. Individual values for subject ability parameters were
estimated in all models; however, the models are increasingly
stringent with respect to the estimation of individual item
parameters. The purpose of comparing weakly and strongly
Results

Converged PSD y PSD b PSD a PSD g DIC

No — — — — —

Yes 0.19 0.71 0.53 0.01 8397.82

Yes 0.23 1.60 0.38 0.01 8482.44

Yes 0.19 0.69 0.23 0.01 8483.80

Yes 0.31 0.66 0.33 0.22 8729.56

Yes 0.31 0.28 0.19 0.05 8730.00

(y) or each item (b, a, and g). ‘‘Group’’ refers to the estimation of one value for all

influence of ‘‘Strong’’ prior beliefs. y, subject ability parameter; b, item difficulty

ior standard deviation; DIC, deviance information criterion.

www.fmrib.ox.ac.uk/fsl/feat5/


Table 2
Parameter estimates for models of varying complexity.

Model Mean estimated value

# y b a g Priors y b y �b a g

1 Individual Individual Individual Group Weak — — — — —

2 Individual Individual Individual Group Strong 0.76 �1.03 1.79 1.13 0.59

3 Individual Individual Group Group Weak �0.14 0.11 �0.25 3.43 0.84

4 Individual Individual Group Group Strong 0.57 �1.01 1.58 1.41 0.59

5 Individual Group Group Group Weak �0.01 �1.70 1.69 1.25 0.52

6 Individual Group Group Group Strong 0.06 �1.79 1.73 1.06 0.52

Note: ‘‘Individual’’ refers to the estimation of unique parameter values for each subject (y) or each item (b, a, and g). ‘‘Group’’ refers to the estimation of one value for all

items. ‘‘Weak’’ item priors allow estimates to be based on observed data without the influence of ‘‘Strong’’ prior beliefs. y, subject ability parameter; b, item difficulty

parameter; a, item discrimination parameter; g, item guessing parameter.
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informative prior distributions, as well as individual versus group
values for the item parameters, was to determine the degree to
which prior theory was needed to overcome the small sample size
problem common to fMRI.

Ability parameters were specified with strongly informative
priors in all models to identify the scale of measurement: y �N(0, 1),
which is required, in some form, for all IRT models. For item
parameters, weakly informative priors were: b�uniform(�4, 4),
a�uniform(0, 4), g�uniform(0, 1); and strongly informative
priors were: b�N(�1, 1), a� logN(0, 0.25), g�beta(20, 20)
I(0.40, 0.50). The choice of normal, lognormal, and beta distribu-
tions for strongly informative priors on b, a, and g respectively are
conventions in IRT that tend to accurately reflect observed data
(see Fox, 2010). The hyperparameters of these priors themselves
should reflect theory or previous data observations. Note that
mean item difficulty was assigned a hyperparameter of negative
one. This was meant to reflect the WMT’s design, which was
tailored for cognitively impaired individuals (i.e., low difficulty),
and the observation that participants in the study were generally
well educated, which suggests above average general ability
(Wilson et al., 1979). The choice of hyperparameters for discri-
mination simply reflects that WMT items are moderately corre-
lated with overall performance. Hyperparameters for lower-
asymptote reflect the expectation of random guessing (i.e.,
0.50). However, the parameter had to be constrained to the
interval between 0.40 and 0.60 to prevent improbable values.

Convergence was established by whether or not the Gibbs
samplers could draw values and by monitoring the traceplots and
potential scale reduction factors (PSRFs; Brooks and Gelman,
1998; Gelman and Rubin, 1992). PSRFs compare between-chain
variation to within-chain variation with values near 1.00 implying
that simulated values are close to the target distribution, and
larger values implying poor convergence. Deviance information
criterion (DIC) values (Spiegelhalter et al., 2002) were used to
compare models. Smaller DIC values imply better fit. Analyses of
residual item correlations (e.g., Yen, 1993) were unreliable due to
the small number of subjects.
2 One minus the proportion of ability variance due to squared mean standard

error.
3. Results

3.1. Estimation of IRT model parameters

Results of estimation for the six models are reported in
Table 1. All models employing strongly informative priors con-
verged without difficulty. That is, the OpenBUGS software suc-
cessfully returned parameter estimates and none had PSRF values
greater than 1.1, suggesting good convergence. Among models
with weakly informative priors, the OpenBUGS software did not
successfully return parameter estimates for the model allowing
individual differences in both item difficulty and item discrimina-
tion parameters (Model 1).

Average posterior standard deviation (PSD) values for the
parameter estimates are also reported in Table 1 (PSD values
are interpreted similarly to standard error values). The mean
parameter estimates for the models are reported in Table 2.
Parameter estimates are generally consistent between models
(note that the absolute difference between y and b is more
important than the individual values); however, Model 3, where
guessing was estimated to be 0.84, is a clear exception. The
guessing parameter appears to have been overestimated in this
model, causing distortion in all other parameters (a common
problem for the 3-PL; see Baker and Kim, 2004). For the other
models, establishing prior restrictions on guessing appears to
have been sufficient to recover plausible parameter estimates.

Direct comparison of the models’ DIC values suggested that
allowing individual differences in item parameters consistently
improved model fit. That is, Models 3 and 4, which allowed for
variation in difficulty, fit better than Models 5 and 6, and Model 2,
which allowed for variation in difficulty and discrimination,
fit better than Models 3 and 4.
3.2. Standard error analyses

Distributions of ability and item difficult estimates for Model
4 are plotted in the top left panel of Fig. 1. The distributions are
shown for a 256 item version of the WMT (the baseline for this
study). As can be seen, the mode of the distribution of item
difficulty is approximately 1.5 S.D.s lower than the mode of the
distribution of examinee ability (the X-axis is scaled in standard
deviation units). This implies that the WMT is too easy for
subjects in the current sample, and is optimized for impaired
examinees. This can also be seen in the corresponding standard
error function shown in the bottom left panel of Fig. 1, which
indicates standard error reaches a minimum near the mean of the
distribution of item difficulty; far below average ability in the
sample. Nonetheless, due to the high number of items adminis-
tered (256), reliability2 remains high at ry ¼0.90 in the sample
(usually considered excellent).

Because of the expense of long fMRI sessions, investigators
prefer to use brief activation tasks. Shortening a task, however,
can diminish the quality of behavioral data. To demonstrate this,
the center column in Fig. 1 shows the impact of reducing the total
number of items by 33% (171 total). At this level, reliability drops
to ry ¼0.85 in the sample. This is because measurement precision
is not optimized for non-impaired groups, as is shown in the



Fig. 1. Panels on the left are derived from acquired study data. The remaining panels are simulated data. Top: Loess fit of histograms for Working Memory Task ability

(solid lines) and item difficulty (dashed lines) parameter estimates for Model 4. X-axis is scaled in standard deviation units. Bottom: standard error function for Working

Memory Task ability parameter estimates in Model 4. Plots are shown for 256 easy items (left column), 171 easy items (center column), and 171 hard items (right column).

Fig. 2. (A) Voxel-wise correlations of y with %signal change during the recognition period. (B) Voxel-wise correlations of %correct with %signal change during the

recognition period. Data are presented for gray matter voxels where %signal change was greater than zero.
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bottom center panel of Fig. 1. However, by increasing average
item difficulty (i.e., matching difficulty to ability), it is possible to
reduce the total number of items by 33% and yet retain an overall
reliability of ry ¼0.90 in the sample. This is because a hard
version of the WMT would be optimized for non-impaired groups,
as is shown in the bottom right panel of Fig. 1.

3.3. Correlations with brain images

For the IRT model to be a useful guide to fMRI task design, the
model’s ability domain should be related to task activation. Because
the ability parameter (y) is an estimate derived from the data, it is
possible that the estimation process might introduce noise or bias
into the estimates, potentially corrupting the relationship between
ability and brain activation. As discussed above, accuracy of esti-
mated parameters is a particular concern because functional brain
imaging studies typically involve much smaller samples than con-
ventional item response studies. Alternatively, because estimates of
y, unlike the observed percent correct score, have been uncoupled
from item difficulty, their correlation with brain activation might be
greater than correlations with percent correct scores. To investigate
correlations with brain activation we averaged across the four sites
the %signal change maps generated by the GLM for the recognition
period in order to produce one brain activation map for each subject.
A map of the voxel-wise correlations of Model 4 y estimates with
%signal change is presented in Fig. 2A for gray matter voxels where
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%signal change was significantly different from zero. Fig. 2B presents
correlations between percent correct with %signal change. The two
maps appear to be nearly identical. In both cases, moderate to large
inverse correlations (�0.65 to �0.75) between ability and activa-
tion are present in some dorsolateral prefrontal cortex voxels.
Alternatively, moderate to large direct correlations are observed in
some occipital and parietal voxels.
4. Discussion

4.1. Findings

IRT was applied to behavioral data obtained during a multi-
center fMRI study of working memory. Modified 3-PL models
were fit to the data, each varying in the number of parameters
that were restricted versus freely estimated for all items. Several
practical challenges were encountered in trying to fit the models
to the data set. Most prominently, the limited number of parti-
cipants, large amounts of planned missing data, and relative low
difficulty of the items in comparison to subjects’ abilities compli-
cated estimation of item parameters. To mitigate these complica-
tions, parameters were estimated using a Bayesian approach
incorporating prior information into the final values. Results of
estimation suggest that strongly informative priors were neces-
sary for all but the simplest versions of the IRT model.

The study team had strong expectations about the abilities
of participants, as well as item difficulties. Participants were well
educated and the majority worked in business, finance and
management jobs (Brown et al., 2011), which predicted above
average general ability (Wilson et al., 1979). Moreover, given the
unusual multi-center aspect of the study, task development was
guided by the principle of tight experimental control over stimulus
and item content, which led task developers to create a test
composed of very similar items. Finally, because schizophrenia
patients often perform about one standard deviation below the
mean on delayed response types of working memory tasks, the
study team focused on the development of relatively easy items
(Lee and Park, 2005). The assumptions of easy item difficulty and
above average ability were systematically incorporated into model
priors. Given the Bayesian approach to the analysis, posterior
values of these model parameters would move away from their
priors if the initial model fit the data poorly. The results, however,
converged with the investigators’ expectations for the selected
Model 4. The mean posterior ability value was 0.57 and the mean
posterior item difficulty was �1.01, values similar to the prior
expectations, further validating this modeling approach.

Although not reported in this paper, adding a site parameter to
the model did not improve fit. This result might be unique to the
current study, where considerable effort went into avoiding site
effects (e.g., removing task learning-contaminated data, avoiding
repeated administration of items, using highly standardized
experimental procedures, and central training of research assis-
tants). The minimal contribution that site made to the modeling
of item performance across subjects is compatible with the
finding that between subject variance in fMRI data acquired
during the same study was 10 or more times greater than site
variance for most regions of interest (Brown et al., 2011). As with
the behavioral data, minimization of site effects in the fMRI data
was likely due to the standardization efforts that went into this
study’s implementation. A paper by Glover et al. (2012) discusses
the multiplicity of issues needing to be addressed when planning
between-site fMRI studies.

Standard error functions provided guidance about the impact
of altering test length and test difficulty on the test’s sensitivity to
individual differences in working memory ability. Participants in
the present study were administered approximately 256 items on
the WMT per scan session. The test standard error function for
256 items was relatively flat across a range of approximately
�2 to 1 on the ability spectrum. The 256 item task, as designed,
discriminates working memory ability among 82% of the general
population over an ability range where no standard error is
greater than 0.25. This corresponded to an excellent reliability
value in the current sample (0.90). However, because item
difficulty is shifted towards the lower end of the ability distribu-
tion, the test discriminates the working memory performance of
mildly to moderately impaired individuals better than more able
subjects, complicating the interpretation of patient versus healthy
control effects sizes and change due to treatment.

The impact of reducing the total number of items administered
on standard error was shown for versions of the task with average
item difficulty unmatched (easy) or matched (hard) to the average
ability of the current sample. While the unmatched version of the
task was associated with a drop in reliability (0.85), the matched
version of the task retained the high reliability value of the full
version (0.90) while reducing test administration by 33% of items.
This, of course, would result in a substantial time and cost savings
in fMRI studies. The results suggest that researchers should use
different versions of cognitive tasks with difficulties matched to
the abilities of specific sub-populations of examinees. Indeed, the
optimal solution with respect to maximizing measurement preci-
sion would be to administer each examinee a potentially unique
set of items based on the principle of matching item difficulty to
specific ability levels through computerized adaptive testing (see
van der Linden and Glas, 2010).

The IRT estimate of ability correlated as well with brain acti-
vation during the recognition period as did percent correct.
The similar correlation of the IRT estimate of ability and percent
correct with brain activation linked the latent ability dimension
to brain activation. This linkage further implies that variations in
item difficulty should be related to the evocation of brain activity
as well. Using an event-related design, Bedny et al. (2007) have
shown that meaningful BOLD signal responses can be detected at
the individual item level. A similar event-related design could be
used to directly test the hypothesis that item parameters provide
meaningful information about the magnitude of brain activation.
Furthermore, it is well known that standard error attenuates
regression coefficients (i.e., shrinks them towards zero). To the
extent that item difficulty and brain activation are directly linked,
it can be assumed that regression coefficients relating brain
activation to other variables of interest will be attenuated in
psychometric regions of high standard error.

4.2. Limitations

Small sample size is perhaps the most critical limitation of
parameter estimates reported in this study. The results provided
guidance on the general distributions of ability and difficulty para-
meters, but are not acceptable for test calibration. The goal of this
study was not to precisely calibrate individual WMT item parameters,
but rather to show how IRT could be used to quantify the overall
properties of a task used in fMRI. Our results suggest that with the
addition of several constraints and prior theory, such quantifications
can be achieved. Also, IRT analyses were conducted under the
assumption that examinees’ performances on the behavioral task
were due, primarily, to a single working memory dimension. The
unidimensional assumption is unlikely ever to be justified unambigu-
ously for clinical neuropsychological applications, where, even for
simple tasks, lesions involving different brain systems can impair
performance by disrupting any of several neurocognitive processes
(Luria, 1966; Kaplan, 1988). Finally, it should again be noted that the
IRT models evaluated in this study do not account for site/repeated
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administration effects (for a similar model see Spray, 1997). It is
possible that subjects became better at the task due to repeated
exposure to the stimuli, or that item parameters were not invariant to
different site/list contexts. However, several analyses that attempted
to incorporate or quantify site effects (not reported here) suggested
that site variability was very minimal (e.g., Brown et al., 2011).

4.3. Suggestions for future research

One apparent solution to the problem of applying IRT to fMRI
studies with limited data is to calibrate item parameters using
larger samples in less expensive testing circumstances (e.g.,
participants not undergoing fMRI), and then to use these precali-
brated items to estimate examinees’ abilities in the experimental
imaging studies. The application of precalibrated items to sam-
ples different from those used to calibrate the items is justified by
the assumed invariance of item parameters in IRT models (Lord,
1980). Nonetheless, this study does suggest that there is value to
using IRT methodology in fMRI research even without precali-
brated items. Researchers can use Bayesian techniques with
informative prior estimates of subject and item characteristics
to derive approximate parameter estimates. These estimates
allow for analyses that can ensure tests are appropriately difficult.

IRT modeling can help improve precision in measurement,
resulting in more robust correlations with brain activation. How-
ever, complexities are bound to arise when modern psychometric
models are retroactively applied to preexisting behavioral tasks.
Thorough consideration of item characteristics prior to test
administration can alleviate some of these concerns. And, by
combining the expertise of psychometricians with the expertise
of cognitive modelers, investigators can develop improved models
capable of accounting for the multifaceted aspects of brain
activation tasks. This combined program of psychometric and
cognitive theory will be facilitated by the continued development
of multidimensional measurement models that can quantify
diverse cognitive processes. Several theorists have made progress
in this respect (see Batchelder, 2010; Embretson, 2010).

4.4. Conclusion

Despite the challenges associated with the application of IRT to
the small samples typical of fMRI studies, the results of the present
study indicated that such applications can be informative. In the
present application, IRT confirmed the sensitivity of task items to
the ability range targeted by task designers while producing
reasonable ability estimates for the individuals studied. The study
results also suggested that the latent ability scale on which item
difficulty was calibrated was linked to brain activation. Together
the results support the view that IRT can meaningfully contribute
to the design of tasks to be used in fMRI studies.
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