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Exploratory (i.e., voxelwise) spatial methods are commonly used in neuroimaging to identify areas that show an
effect when a region-of-interest (ROI) analysis cannot be performed because no strong a priori anatomical hy-
pothesis exists. However, noise at a single voxel is much higher than noise in a ROI making noise management
critical to successful exploratory analysis. This work explores how preprocessing choices affect the bias and var-
iability of voxelwise kinetic modeling analysis of brain positron emission tomography (PET) data. These choices
include the use of volume- or cortical surface-based smoothing, level of smoothing, use of voxelwise partial vol-
ume correction (PVC), and PVCmasking threshold. PVCwas implemented using theMuller-Gartnermethodwith
themasking out of voxelswith low graymatter (GM)partial volume fraction. Dynamic PET scans of an antagonist
serotonin-4 receptor radioligand ([11C]SB207145) were collected on sixteen healthy subjects using a Siemens
HRRT PET scanner. Kinetic modeling was used to compute maps of non-displaceable binding potential (BPND)
after preprocessing. The results showed a complicated interaction between smoothing, PVC, and masking on
BPND estimates. Volume-based smoothing resulted in large bias and intersubject variance because it smears sig-
nal across tissue types. In some cases, PVCwith volume smoothing paradoxically caused the estimated BPND to be
less thanwhen no PVCwas used at all. When applied in the absence of PVC, cortical surface-based smoothing re-
sulted in dramatically less bias and the least variance of the methods tested for smoothing levels 5 mm and
higher. When used in combination with PVC, surface-based smoothing minimized the bias without significantly
increasing the variance. Surface-based smoothing resulted in 2–4 times less intersubject variance thanwhen vol-
ume smoothing was used. This translates into more than 4 times fewer subjects needed in a group analysis to
achieve similarly powered statistical tests. Surface-based smoothinghas less bias and variance because it respects
cortical geometry by smoothing the PET data only along the cortical ribbon and so does not contaminate the GM
signal with that of white matter and cerebrospinal fluid. The use of surface-based analysis in PET should result in
substantial improvements in the reliability and detectability of effects in exploratory PET analysis, with or with-
out PVC.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Exploratory spatial methods are used in neuroimaging to find areas
that show an effect of diagnosis, demographics, treatment, etc., where
no strong a priori anatomical hypothesis exists. To do this, a parametric
map of some neuroimaging measure is acquired for each subject. This
map is then transformed into a common space where subjects can be
enter for Biomedical Imaging,
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compared independently at each voxel. Based on this test, each voxel
is assigned a statistic to create a statistical parametric map (SPM). The
effect under study can be declared significant only after correcting the
SPM for multiple spatial comparisons, usually by creating clusters of
contiguous voxels whose statistic exceeds a threshold (Friston et al.,
1993). These clusters need not have well-defined anatomical bound-
aries and so might not be found with region-of-interest (ROI) analysis.
Exploratory analysis has been applied extensively in PET neuroimaging
(e.g., Becker et al., 2011; Haahr et al., 2012b; Kochunov et al., 2009;
Kraus et al., 2012; Park et al., 2006; Protas et al., 2010; see also refer-
ences in Table 1).
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Table 1
A sample of studies that perform exploratory voxelwise analysis of PET or SPECT data with MG PVC as implemented in this study. The current study used a Siemens ECAT HRRT scanner
with PSF = 4 mm. FWHM is the applied smoothing level.

Reference FWHM Threshold Tracer Scanner PSF

Matsuda et al., 2002 12 mm 35% 99mTc-ECD Multispect3 9 mm
Matsuda et al., 2003a 12 mm 35% 99mTc-ECD Multispect3 9 mm
Chetelat et al., 2003 14 mm ? FDG ECAT Exact HR+ 12 mm
Yanase et al., 2005 9 mm 35% FDG GE Advance 6 mm
Inoue et al., 2005 12 mm 25% 99mTc-ECD SPECT-2000H 7 mm
Haltia et al., 2007 5 mm ?b 11C-Raclopride GE Advance ?
Samuraki et al., 2007a 12 mm 35% FDG GE Advance 6 mm
Mevel et al., 2007 14 mm 25%c FDG ECAT Exact HR+ 12 mm
Hurlemann et al., 2008 10 mm 50%c 18F-Altanserin ECAT Exact HR+ 6 mm
Chetelat et al., 2008 14 mm 20% FDG ECAT Exact HR+ 12 mm
Van Laere et al., 2008 10 mm ?c 18F-MK-9470 HR+ ?
Kalpouzos et al., 2009a 14 mm 50%c FDG ECAT Exact HR+ 12 mm
Kalpouzos et al., 2009b 14 mm 50%c FDG ECAT Exact HR+ 12 mm
Bourgeat et al., 2010 12 mm ?c 11C-PIB Allegro ?
Curiati et al., 2011 12 mm ?b FDG Biograph-16 4 mm
Uchida et al., 2011 8 mm ?c 18F-Setoperone ECAT HRRT 3 mm

a These studies report reduction in FDG or 99mTc-ECD uptake after PVC. A question mark indicates that a parameter was not given.
b Used method from Quarantelli et al., 2004 which thresholds based on tissue type with maximum PVF which makes the threshold voxel-dependent in the range of 33% to 50%.
c Thresholding performed after smoothing; this makes the threshold essentially 0% for purposes of comparison with this study. All others performed thresholding before smoothing.
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Adisadvantagewith exploratory analysis is that themeasurement at
a single voxel is often quite noisy which reduces the statistical power
andmakes it difficult to find clusters. To compensate, spatial smoothing
is widely applied in exploratory analysis (Worsley et al., 1996). Spatial
smoothing is the process of replacing the value at a voxel by a
distance-weighted average of neighboring voxels. If the signal is more
similar over the neighborhood than the noise, then the averaging pro-
cess yields a boost in the signal-to-noise ratio (SNR). Spatial smoothing
can profoundly affect the results of an exploratory spatial analysis by in-
creasing the statistical power at individual voxels (Strother et al., 2004).
The weight of a neighbor is determined by the distance to the center
voxel and choice of full-width/half-maximum (FWHM) of the Gaussian
weighting kernel. In volumetric smoothing, the neighborhood is defined
in three-dimensional space, encompassing all voxelswithin a surround-
ing sphere irrespective of whether a given voxel within that sphere is of
the same tissue type as the central voxel. For example, if the central
voxel is within cortical gray matter (GM), then voxels within the
smoothing kernel may be white matter (WM), cerebrospinal fluid
(CSF), subcortical GM, or cortical GM from a neighboring gyrus. In
contrast, surface-based smoothing defines a neighborhood to be only
along the cortical surface (i.e., within the “cortical ribbon”) with dis-
tances computed along the ribbon. This prevents blurring effects of
neighboring WM, CSF, and subcortical GM with cortical GM and also
prevents blurring between two cortical areas that are close in Euclidian
space but far apart along the surface (e.g., precentral and superior tem-
poral gyri). Thus, surface-based smoothing should be used instead of
volume-based smoothing for the analysis of cortical structures.

PET imaging is susceptible to partial volume effects (PVE) for reasons
involving the finite size of detector crystals, detector principles, travel-
ing distance before annihilation, Poisson count statistics, and recon-
struction methods. The reconstructed image can be approximated by
assuming that the true underlying PET image has been volume-
smoothed with a Gaussian of a known FWHM (the point spread func-
tion of the scanner). This implicit smoothing is distinct from the explicit
smoothing performed in an exploratory analysis as mentioned above.
The PVE causes the radiotracer signal to spill over between tissue
types. Typically this results in anunderestimation of radiotracer concen-
tration in GM. The amount of underestimation at a location depends on
the volume of GM near that area. When studying diseases where GM
volume is changing (such as Alzheimer's disease), PVEs can create un-
certainty as to whether a change in radiotracer concentration is due to
a change in tissue uptake or simply a change in GM volume (Thomas
et al., 2012). Either can change themeasured radiotracer concentration.
Post-reconstruction methods have been developed to correct for
PVEs (PVC) on a voxel-wise basis given a coregistered tissue segmenta-
tion from CT or MRI and the FWHM of the PET point spread function.
The most common of these is the Muller-Gartner (MG) method
(Muller-Gartner et al., 1992) but others have also been proposed
(Meltzer et al., 1990, 1996; Thomas et al., 2012). The principle is that
the PET signal spilling into one tissue type from an adjacent tissue
type is estimated and subtracted and, subsequently, each voxel is divid-
ed by the partial volume fraction (PVF) for its tissue type. The resulting
image is then transformed to common space, spatially smoothed, and
compared across subject; some examples of studies that have taken
this approach are shown in Table 1.

Evaluation of voxelwise PVC performance has been limited to how
accurately the PET signal can be recovered inside of a ROI (Hutton
et al., 2013; Meltzer et al., 1990; Muller-Gartner et al., 1992; Thomas
et al., 2012; Yanase et al., 2005). The performance of PVC has not been
evaluated after the explicit spatial smoothing operation ubiquitously
performed in exploratory analysis. This is a critical omission because
MG PVC can cause noise amplification (Rousset et al., 2007) due to the
division by the PVF, a number always less than 1 (sometimes much
less). If the spill-in subtraction is inaccurate, then this inaccuracy will
also be amplified. The more distant a voxel is from GM, the smaller
the GM PVF and the more the noise amplification. When the data are
volume-smoothed, problematic voxels (i.e., those with low PVF) will
be smoothed into, and in so doing contaminate, the high PVF voxels.

PET time series data are often analyzed using kinetic or graphical
models to determine the binding potential (BPND) of a radioligand
(Ichise et al., 1996, 2003; Lammertsma and Hume, 1996; Lammertsma
et al., 1996; Logan et al., 1990). Ichise et al. (2003) demonstrated that
BPND estimates computed from kinetic models are subject to noise-
dependent bias. This means that as the noise level increases, not only
does the variance of the estimated BPND increase, but it systematically
deviates from the true underlying BPND. The noise-dependent bias can
be expected to be much worse in an exploratory analysis where the
voxel-wise noise level is much greater than that in a ROI. If the noise
level is different across subjects, then the bias will increase the
intersubject variability. If the noise level is different across groups,
then noise-dependent bias can contribute to inter-group bias. This em-
phasizes the need to properly manage time series noise in exploratory
kinetic modeling applications.

To summarize, (1) exploratory analysis is needed to find effects for
which there is no spatial a priori hypothesis, (2) spatial smoothing
is needed in exploratory analysis to improve voxel-wise SNR, and



1 A vertex is a data point in a spatial location, so it can be thought of as a voxel. Belowwe
use “voxel” as a single term to indicate either a voxel from a volume-based analysis or a
vertex from a surface-based analysis.

2 I.e., the radioactivity corrected for decay.
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(3) volume-based spatial smoothing can interact with MG PVC to cause
an increase in noise and bias. As a result, exploratory analysis with PVC
of brain PET data is problematic. The purpose of this study is to docu-
ment the noise and bias amplification that results from the interaction
of MG-style PVC and volume-based smoothing and to show that these
problems are greatly reduced when cortical surface-based smoothing
is used instead. We also demonstrate that the bias and noise properties
of surface-based smoothing are superior to that of volume-based even
when PVC is not used. The demonstration uses a kineticmodeling appli-
cation, which is particularly sensitive to noise and so has the most to
gain from the new surface-based technique.

Methods

Participants

Sixteen healthy male participants (age: mean +/− s.d. =
25.9 +/− 3.85, range = 20–35 years) were recruited. These data sets
have been used in two other studies. However, one was a ROI-based
analysis (Fisher et al., 2012) and the second focused on specific binding
only within hippocampus (Haahr et al., 2012a). The protocol was ap-
proved by the Ethics Committee of Copenhagen and Frederiksberg,
Denmark, and all subjects gave written informed consent.

PET acquisition and preprocessing

The serotonin 5-HT4 PET radioligand [11C]SB207145was synthesized
as described previously (Marner et al., 2009). An intravenous bolus in-
jection of [11C]SB207145 (injected radioactivity: mean +/− s.d. =
589 +/− 31 MBq, range = 489–608 MBq)was given over 20 s. Imme-
diately following injection, a 2-hour dynamic emission scan including38
time frames (6 × 5, 10 × 15, 4 × 30, 5 × 120, 5 × 300, and 8 × 600 s)
was acquired using a Siemens ECAT HRRT scanner operating in 3D-
acquisition mode with an approximate in-plane resolution of 2 mm
and point spread function (PSF) of 4 mm. Dynamic PET images were re-
constructed using a 3D-OSEM-PSF (Sureau et al., 2008). Single-subject
PET frames were motion corrected to frame 26 using AIR 5.2.5 (Woods
et al., 1992). The aligned maps of time activity curves (TACs) were
used as input to the pipelines described below.

Structural MRI and anatomical analysis

A 3D T1-weighted MPRAGE scan (TE/TR/TI = 3.04/1550/800 ms;
bandwidth = 170 Hz/Px; echo spacing = 7.7 ms; flip angle = 9°;
1 mm3 voxel size) was acquired for each subject using a Siemens Trio
3 T MR scanner. All MRI scans were corrected for spatial distortions
due to gradient non-linearity (Jovicich et al., 2006) so that they were
distortion-free relative to the PET. All subjects were analyzed in
FreeSurfer (FS, www.surfer.nmr.mgh.harvard.edu, version 5.3) to pro-
vide detailed anatomical information customized for each subject
(Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 1999a,b; Segonne
et al., 2004, 2007). An example FS analysis is shown in Figs. 1A, G,
andH. In Fig. 1A; one can see the green and blue lines that surround cor-
tex. These are the “white” and “pial” surfaces, respectively. Smoothness
constraints allow the surfaces to cut through voxels and provide
subvoxel segmentation accuracy. While rendered in a 2D slice, these
surfaces are actually 2D manifolds embedded in 3D space. The 2D-in-
3D pial surface is shown in Fig. 1G. The folded surface can be unfolded
(“inflated”) to see inside the sulci as shown in Fig. 1H. FreeSurfer also
segments seven subcortical GM structures per hemisphere (four of
which are shown Fig. 1A) aswell as ventricles, cerebralWM, cerebellum
GM and WM, and brainstem (Fischl et al., 2002). The cortical surface is
further segmented into gyral regions as shown in Figs. 1G and H. A
total of 82 segmentations (including left and right hemispheres) were
used in this study (Desikan et al., 2006; Fischl et al., 2004). FS provides
excellent MRI segmentation accuracy, something that has been shown
to be important in PET PVC (Quarantelli et al., 2004). The cortical sur-
faces of each subject are further registered to a standard surface atlas
space (similar to Talairach but on the surface) in which comparisons
across subject can be made (Fischl et al., 1999b).

Surface smoothing

The 2D-in-3D surface model consists of a dense mesh of triangles,
the edges of which are about 1 mm in length. The point where neigh-
boring triangles meet is called a vertex.1 Each vertex can be assigned a
value such as cortical thickness or PET intensity or segmentation label.
Surface smoothing is then accomplished by averaging this value
among nearby vertices (Hagler et al., 2007). This type of smoothing is
constrained to be only within cortical GM, so WM, CSF, and subcortical
GM never get smoothed into cortical GM. Like volume smoothing, sur-
face smoothing is quantified by its FWHM. Several surface-based PET
studies have been performed with voxelwise PVC (Becker et al., 2011;
Kochunov et al., 2009; Park et al., 2006; Protas et al., 2010); however,
they did not use MG PVC, did not perform a systematic comparison be-
tween volume and surface smoothing at different smoothing levels, and
did not perform surface-based kinetic modeling.

Multimodal integration

For each subject, mean PET uptake images were computed across all
time points in the TAC. This was aligned to the MRI using Boundary-
based Registration (BBR, Greve and Fischl, 2009) using a 6 degree of
freedom linear transform. BBR is very robust with respect to image arti-
facts and so an ideal candidate for PET-MR registration. The registration
accuracy was assessed visually for each subject, a typical example of
which is shown in Fig. 1B. Accurate registration has been shown to be
important in PET PVC (Quarantelli et al., 2004). Once the registration
was established, the FreeSurfer segmentations were mapped into the
PET space. In addition, the segmented MRIs were used to create partial
volume fraction maps for WM and GM in the PET space (Fig. 1D).
These were volume smoothed by the PSF of the HRRT (4 mm FWHM;
Fig. 1E) in preparation for performing PVC. The registration also allowed
for the PET data to be sampled onto the cortical surface. The PET data
were always sampled half way between the white and pial surfaces
(i.e., in the middle of the cortical ribbon). Varnas et al. (2003) found
that cortical layers I and II have higher BPND than deeper layers, so sam-
pling in themiddle captures the average. Given that cortex is only 3 mm
thick on average and the voxelswere 1.2 mm, there is not sufficient res-
olution to claim that a particular layer of cortex is being sampled. Sam-
pling at the halfway point is away to assure that the sample comes from
a point that is least affected by PVE.

Spatial processing pipelines

An overview of the pipelines under study is shown in Fig. 2. There
are four major manipulations of the pipeline based on 1) whether PVC
was used or not and 2) whether smoothing was performed in the vol-
ume or on the surface. In each case the raw PET TAC served as the
input. In the Surface Smoothing pipelines, the PET TAC2 was sampled
onto the subject's native surface and then transformed to the FreeSurfer
standard surface space after which it was surface-smoothed. In pipe-
lines with Volume Smoothing, the TACs were sampled onto the surface
after smoothing in the volume. The result of eachpipeline is a set of TACs
sampled onto the standard surface space. In PET exploratory analysis,
the 3-D FWHM of applied smoothing generally ranges from 5 mm–

14 mm (Table 1). In this study, the smoothing level was varied from

http://www.surfer.nmr.mgh.harvard.edu)


Fig. 1.A. T1MRIwithwhite surface (light green), pial surface (blue), putamen (red), pallidum (orange), caudate (yellow), and thalamus (green). Note that insular cortex and putamen are
very close to each other. B. PET image summed over time and co-registered with the MRI (gray scale intensity is raw summed PET value). C. Same as B after MG PVC and 20% masking.
D. Gray matter partial volume fraction superimposed on the MRI. The color scale to the right has a minimum of 1% and a maximum of 100%. E. Same as C but smoothed by 4 mm
(the PSF of the scanner) and thresholded at 1%. F. Same as D but thresholded at 20%. G. Pial surface with surface segmentations. H. Inflated surface with segmentation outlines. Dark
gray areas are sulci; light gray areas are gyri. The light blue scale bar shows the length of 30 mm in both G and H.
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0 mm to 15 mm. At a smoothing level of 0, the volume- and surface-
based streams are identical. Comparisons between the volume- and
surface-based pipelines were always done in the standard surface
space to assure that differences are only due to either PVC or type of
smoothing.

ROI-based partial volume effect correction

Though we are interested in testing voxelwise analysis, a ROI-based
PVCmethodwas also implemented for two reasons: (1) the ROImethod
supplies information needed for voxelwise analysis (namely the k2′ and
meanWM TAC), and (2) it provides a natural way to assess the effect of
smoothing on voxelwise analysis. The method used, the geometric
transfer matrix (GTM; Rousset et al., 1998), assumes each ROI to have
a constant but unknown mean value. A forward linear model is con-
structed that relates all unknown means, the spatial definitions of all
ROIs, the PSF, and the observed PET intensities. This model is then
inverted to solve for the unknownmeans while simultaneously remov-
ing spill-in and compensating for spill-out without suffering from noise
amplification present in MG. The GTM was implemented using all 82
ROIs, which covered the entire brain (i.e., cortical and subcortical, GM,
WM, and CSF). The output is a set of 82 TACs.

Voxel-based partial volume effect correction

The MG algorithm was implemented as described in the original
paper (Muller-Gartner et al., 1992) with several modifications intro-
duced in later papers. MG assumes that the true PET signal in WM is
the same across all WM voxels. This value is obtained from the GTM
(making this the “modified” MG method (Quarantelli et al., 2004))
and then multiplied by the WM PVF to get a “synthetic” WM image
which is then subtracted from the raw PET to remove the contribution
of WM from all voxels. The voxels in this image are then divided by
the GM PVF to correct for the reduction in GM intensity due to the scan-
ner PSF. Researchers performing exploratory analysis havemodifiedMG
further by thresholding the corrected image based upon the amount of
GM in a voxel (Rousset et al., 2007; see also Table 1 for references). Typ-
ical thresholds are in the range of 20%–50% (Table 1). In this study, we
varied the threshold from 1% to 50%. The TACs in voxels that did not
meet this criterion were set to zero. Figs. 1E and F show the masks for



3 Some researchers ( Erlandssonet al., 2012;Hutton et al, 2013; Thomas et al., 2012) use
the recovery coefficient (RC) to measure bias. The RC and bias are related through the
equation RC = (Bias/100 + 1).

Fig. 2.Overview of processing streams under test. A: Volume smoothingwithout PVC (NoPVC+VolSm). B. Surface smoothingwithout PVC (NoPVC+SurfSm). C. Volume Smoothing after
PVC (PVC+VolSm). D. Surface smoothing after PVC (PVC+SurfSm). The GTM stream is a ROI-based analysis. X% refers to the GM PVFmasking threshold. The Reference TAC comes from
the cerebellum.
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1% and 20%, thresholding. Fig. 1C shows the uptake image from Fig. 1B
afterMG correction and 20%masking butwithout any smoothing. In ad-
dition, any voxel whose TAC sumwas less than zero was set to 0, which
can happen when the synthetic WM TAC is too large. The MG TAC im-
ages were then processed in the volume- and surface-based streams
(Fig. 2) to provide TAC maps for the kinetic modeling.

Kinetic modeling (KM)

KMwas performed using the two-stageMultilinear Reference Tissue
Model (MRTM2; Ichise et al., 2003). In thefirst stage, the globalwashout
rate constant from the reference region, k2′, was computed from high-
binding regions (putamen, caudate, and pallidum for 5-HT4) using
MRTM (Ichise et al., 1996) with cerebellar GM as the reference. Once
the k2′ was established, the rate constant for transfer from target tissue
to plasma (k2) and the apparent rate constant (k2a) were estimated in
the second stage from the TAC of each ROI/voxel by solving for k2 and
k2a in the following formula:

C j tð Þ ¼ k2 j
Cr tð Þ
k′2

þ
Zt

T¼0

Cr Tð ÞdT
0
@

1
A−k2aj

Zt

T¼0

C j Tð ÞdT
0
@

1
A ð1Þ

where Cj(t) is the TAC of the target ROI/voxel j, and Cr(t) is the reference

TAC. The non-displaceable binding potential was computed as BPNDj ¼
k2 j

k2aj
−1. For pipelines A–D in Fig. 2, the result is a map of binding poten-

tials for each subject in the standard surface space. The output of the
GTM pipeline is a set of BPND values for each ROI and subject. All pipe-
lines use the same cerebellar reference TAC and the same k2′.

Performance criteria

We evaluated the performance of the four pipelines in anticipation
of their use in an exploratory map-based analysis using two perfor-
mance criteria: bias and variance (Hutton et al., 2013; Thomas et al.,
2012). Bias indicates howmuch the value at a voxel systematically varies
from the “true” value at that voxel as a percentage of the “true” value.3

We do not have the true value at each voxel, butwe dohave the value of
a ROI from the GTM. To compute the bias, we average the voxelwise
BPND over a ROI and compare it to the BPND from the GTM. In addition,
we performed a noiseless simulation in which the value at a voxel in a
ROI was set to the group average GTM BPND for that ROI afterwhich
the map was smoothed by the 4 mm PSF. Simulated BPND maps were
generated for each subject and analyzed in each pipeline afterwhich
the bias was computed as above comparing the group mean ROI value
against the known simulation value.

Variance indicates how much the results tend to be spread around
the average (without regard to any bias). We use the coefficient of var-
iation (CoV) as our metric of variance. The CoV was computed as fol-
lows. The mean and standard deviation of the BPND across subject was
computed at each voxel. The CoV was computed as the voxel standard
deviation divided by the voxel mean. The CoVwas then averaged across
all voxels in the ROI to give an estimate of the amount of total cross-
subject variability at each voxel in the ROI. This CoV metric is meant to
measure the average intersubject variability at a voxel inside the ROI.
It is not a measure of intervoxel variability. The CoV is the inverse of
the effect size and so can be used in a power analysis. Simulations
were not used to evaluate variance because of the difficulties in simulat-
ing both within and between-subject noise.

For both the bias and variancemetrics, averages for a ROIwere com-
puted using a robust mean in which the highest and lowest 5% of the
data within a ROI were excluded (Hutton et al., 2013; Thomas et al.,
2012). Note that while we are reporting ROI-based metrics, the bias
and variance measures are meant to reflect performance at a voxel
level and so applicable to exploratory analysis.

image of Fig.�2


Table 2
Distribution of 5-HT4 BPND throughout the brain as found in this and other studies. “GTM” is for this study where the 5-HT4 BPND was computed from the GTM. “Simple Mean” is for this
studywhere the 5-HT4 BPNDwas computed from a simplemean of the TACs in the ROI (and somore consistent withMarner and Fisher). “Fisher” refers to the 5-HT4 BPND as found in a PET
study by Fisher et al. (2012) using an overlapping data set. “Marner” refers to the 5-HT4 BPND as found in a PET study byMarner et al. (2010). “Varnas” is the approximate number of bind-
ing sites found by Varnas et al. (2003) in the postmortem human brain using autoradiography. +/− indicates cross-subject standard deviation. N/A: not available. The ROIs are sorted in
descending GTM BPND order. ROI definitions are approximate across the studies.

ROI GTM Simple Mean Fisher Marner Varnas

Caudate 5.41 +/− 0.63 3.30 +/− 0.41 2.97 +/− 0.83 2.62 +/− 0.33 32.0
Lentiform 3.82 +/− 0.50 2.83 +/− 0.29 3.03 +/− 0.74 2.60 +/− 0.22 29.0
Parietal Cortex 1.51 +/− 0.13 0.89 +/− 0.09 N/A 0.47 +/− 0.08 N/A
Temporal Cortex 1.43 +/− 0.14 0.92 +/− 0.10 N/A 0.62 +/− 0.08 22.0
Posterior Cingulate 1.30 +/− 0.11 0.92 +/− 0.09 N/A 0.59 +/− 0.10 N/A
Anterior Cingulate 1.28 +/− 0.14 0.93 +/− 0.11 N/A 0.59 +/− 0.09 N/A
Prefrontal Cortex 1.26 +/− 0.13 0.79 +/− 0.10 N/A 0.42 +/− 0.06 15.0
Hippocampus 1.22 +/− 0.09 0.91 +/− 0.07 0.95 +/− 0.20 0.91 +/− 0.13 23.5
Sensorimotor Cortex 1.17 +/− 0.11 0.68 +/− 0.08 N/A 0.27 +/− 0.06 N/A
Amygdala 1.16 +/− 0.17 0.96 +/− 0.12 0.85 +/− 0.18 0.87 +/− 0.14 18.0
Occipital Cortex 1.10 +/− 0.09 0.65 +/− 0.06 N/A 0.38 +/− 0.06 11.9
Insula 1.10 +/− 0.11 0.86 +/− 0.08 N/A 0.77 +/− 0.10 16.0
Thalamus 0.73 +/− 0.12 0.63 +/− 0.09 N/A 0.54 +/− 0.07 11.1
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Results

Table 2 summarizes the group mean GTM ROI results for a subset
of ROIs and provides a comparison with other studies. Group mean
(+/–s.d.) BPND values for each cortical ROI and each processing stream
are given in Supplementary Table S1. Since the GTMproduces one value
for each ROI, it should always result in variance reduction due to averag-
ing over the ROI. However, the matrix inversion can result in noise am-
plification if there aremanyROIs or if some ROIs are very small. Thiswas
not an issue for any of the 82 ROIs in any subject. Theworst casewas the
Fig. 3. Effect of volume (3D) and surface (2D) smoothing and thresholding on bias and variance
PVC pipelines as a function of threshold at a FWHM of 10 mm (including simulations). C. Avera
D. Average voxelwise CoV for each pipeline as a function of threshold at a FWHM of 10 mm. T
across subjects, which is not directly related to the CoV.
nucleus accumbens in which the variance was reduced by a factor of 95.
For cortex, the reduction ranged from 600 to 2000. Thus all ROIs had
very stable, robustmean estimatesmaking theGTMa stable benchmark
against which the voxelwise results can be compared. The intersubject
standard deviations in Table 2 confirm that the GTM is notmuch noisier
than non-PVC methods.

Fig. 3 shows a summary of the main results for this study. Fig. 3A
shows the bias for each of the four pipelines as a function of smoothing
level at a fixed threshold of 20%. Fig. 3B shows the bias as a function
of threshold at a fixed smoothing level of 10 mm and includes the
. A. Bias of each pipeline as a function of smoothing level at a threshold of 20%. B. Bias of the
ge voxelwise CoV for each pipeline as a function of smoothing level at a threshold of 20%.
he green asterices (*) indicate the same data points. Error bars reflect standard deviation

image of Fig.�3
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noiseless simulation results. Each point in Fig. 3A and B represents the
average percent bias across subjects. The average percent bias of a sub-
ject is the average of the absolute biases across all ROIs within that sub-
ject. The absolute bias could reflect negative bias (i.e., the ROI value is
less than the GTM value) or positive bias (i.e., the ROI value is greater
than the GTM value). The absolute bias is given a negative sign to reflect
that the vast majority have negative bias (though see Fig. 4D for an ex-
ample of positive bias). While the BPND will vary across ROI, it is appro-
priate to average the bias metric because it is normalized to the GTM
BPND in each ROI thus making the bias in each ROI commensurate. The
error bars are the standard deviation of the bias across subject after av-
eraging over the ROI which is why they change little as the smoothing
level is changed in Fig. 3A. Thus, these error bars represent the ROI-
wise, not voxelwise, variance and are not closely related to the CoV in
Figs. 3C and D, which does change with FWHM. The two plots on the
bottom row (3C and 3D) show how the CoV compares across the pipe-
lines as a function of smoothing and threshold. Each data point repre-
sents the average CoV across all ROIs. The CoV already represents the
variance across subjects, so cross-subject error bars are not possible.
Note that non-PVC pipelines do not have a threshold parameter so
they are represented by flat dashed lines in Figs. 3B and D.

Fig. 4A shows the effect of FWHM on the k2 KM rate parameter for
superior temporal gyrus (STG). Figs. 4B–D show the effect of FWHM
on BPND for three representative ROIs. Each point is the robust average
of the BPND values across the given ROI for the given pipeline, and the
error bars are standard deviation across subject (again not necessarily
related to CoV). All plots used a threshold of 20%. The horizontal black
line is the GTM result (the “ideal” value).

Fig. 5 shows the effects of smoothing and threshold on the group av-
erage voxelwise BPND maps, with and without PVC, projected onto the
lateral and medial surfaces of the inflated left hemisphere. These maps
represent the data from which the plots in Figs. 3A, B and 4 were
Fig. 4.Effect of smoothingonk2 andBPND in three representative ROIs. A. k2 (min−1) for Superio
for Insula. Error bars reflect standard error of the ROI mean across subjects (not related to the
generated. Fig. 6 shows the effects of threshold on the group average
voxelwise BPND maps (FWHM = 10 mm). These maps represent the
data fromwhich the plots in Fig. 3Bwere generated. One always expects
BPND to be greater than or equal to zero (red/yellow); however, many of
the maps have negative (blue) BPND for reasons explained below.
Discussion

Kinetic modeling

Kinetic modeling of [11C]SB207145 has been extensively studied
in Marner et al. (2009) and Marner et al. (2010) using data from the
(lower resolution) GE Advance scanner, using the SRTM instead of
MRTM2, defining ROIs based on Quarantelli et al. (2004) instead of
FreeSurfer, and not using PVC. Fisher et al. (2012) used the same pro-
cessing as Marner et al. (2010) with a superset of the data in this
study. Neither Fisher et al. (2012) nor Marner et al. (2010) used PVC,
so, for comparison, we analyzed the ROI data using a simple mean of
the TACs. Table 2 shows that the “Simple Mean” results of the current
study are very close (within 1 s.d.) to that of Fisher et al. (2012) despite
very different processing; the standard deviation is always less for the
current study. Our results are also very close to those of Marner et al.
(2010) in ROIs less susceptible to PVE (eg, caudate, lentiform, hippo-
campus, amygdale, thalamus). For cortical ROIs, our BPND values are
substantially larger than that of Marner et al. (2010). This is because
Marner et al. (2010) used a lower resolution scanner and cortical ROIs
are much more susceptible to PVE than subcortical ROIs. The GTM re-
sults are always greater than the others because the GTM uses PVC.
This comparison shows that the kinetic modeling performs as well as
and is consistent with that of Marner et al. (2010) and Fisher et al.
(2012). Table 2 also shows that the GTM BPND rank order generally
r temporal gyrus (STG). B. BPND for STG. C. BPND for Caudal anterior cingulate (CAC). D. BPND
voxelwise CoV measure).
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Fig. 5. Binding potential maps as a function of volume and surface smoothing level. Voxels are transparent (i.e., gray) if they are not in cortex or their BPND value is in the range −0.1
to + 0.1. The color scales go from +/−0.1 to +/−1.3 (warm colors are positive BPND; blue are negative). The first row is the volume smoothing method without PVC. The next two
rows are the volume method with PVC and thresholds of 1% and 20%. The next three rows are the same for surface-based smoothing. The first three columns are of the lateral view of
left hemisphere; the second three columns are of themedial view. Green arrows point to activity from the high binding putamen “leaking” into cortex. Magenta arrows point to increases
in negative BPND in the medial wall.
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agreeswith the number of binding sites in the postmortem autoradiog-
raphy study of Varnas et al. (2003).

No partial volume correction (NoPVC)

As expected the bias is generally higher without PVC than the equiv-
alent PVC pipeline (but not always, see below). As smoothing increases,
the bias also increases (Figs. 3A, B, and 4), but the increase ismuchmore
for volume smoothing (NoPVC+VolSm) than for surface smoothing
(NoPVC+SurfSm). The reason for this is that NoPVC+VolSm uses a 3D
smoothing kernel which indiscriminately smoothes in signal from
neighboring WM and CSF tissue around cortex (as well as true signal
from adjacent cortical GM). Smoothing in of signal from neighboring
WM and CSF will artificially reduce estimated binding potential values
Fig. 6. Binding potential maps as a function of threshold (at volume or surface smoothing of FW
BPND; blue are negative). The first two rows are the lateral andmedial views of the results for th
method. Green arrowspoint to a locationwhere BPNDdropswith threshold eventually becoming
BPND at low threshold which decreases at moderate threshold then becomes larger at high thr
within GM because any [11C]SB207145 binding in WM and CSF reflects
non-specific binding. In effect, volume-smoothing without PVC is the
same as collecting data on a lower resolution scanner with a larger PSF.

The surfaced-based analysis without PVC has similar bias as the
volume-based analysis at low smoothing levels (they are the exact
same analysis at FWHM = 0). However, at higher smoothing levels,
the bias of NoPVC+SurfSm is virtually unchanged. This is because
smoothing along the surface does not dilute the GM TAC with that
from WM and CSF but only smoothes in signal from adjacent cortex.
Though there is variation in BPND of the 5-HT4 receptor across cortex,
adjacent regions tend to have similar BPND (Marner et al., 2010;
Varnas et al., 2003), so smoothing along cortex tends to have a small
effect. Fig. 1H shows that even a 15 mm kernel is much smaller than
the cortical structures involved.
HM = 10 mm). The color scales go from +/−0.1 to +/−1.3 (warm colors are positive
e volume smoothingmethod. The next two rows are that for the surface-based smoothing
less thanwhen noPVC is applied.Magenta arrows point to a locationwith a large negative
esholds.
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Volume-based smoothing has another undesirable effect in that it
can smooth subcortical GM into cortex or vice versa. In this data, this ef-
fect is evident in insula and putamen. Putamen is a high binding area
that is very close to insula (only a few mm separate them; see
Fig. 1A). Thus, volume smoothing will cause signal from putamen to
be smoothed into insula. This can be clearly seen in Fig. 5. As volume
smoothing is increased, the high BPND spot in insula gets bigger (green
arrows). In Fig. 4D, one can see that the NoPVC+VolSm estimates
level out at a much lower FWHM than the other ROIs and actually in-
creases slightly as FWHM is increased. This increase is evidence of con-
tamination of the insula from putamen. The same phenomenon was
observed in the simulations (not shown). Again, the surface-based re-
sult does not suffer from this effect. In Fig. 4D, one can also see that
the MG PVC results are actually higher than the GTM at low smoothing
levels (i.e., positive bias). This is because the GTM appropriately
removes the spill-over between insula and putamen whereas MG PVC
cannot correct for spillover between two GM structures.

PVC and volumetric smoothing

In general, MG PVC resulted in larger BPND and less biaswith respect
to the GTMBPND, both expected results. While this is generally true, it is
not always the case, and conditions where PVC actually reduces BPND
relative to NoPVC are important and informative. For example, Fig. 3B
shows that the bias in PVC+VolSm (red line) is worse than that of
NoPVC+VolSm (dashed magenta line) when the threshold exceeds
25%. Even at a threshold of 20%, the PVC+VolSm of the caudal anterior
cingulate (Fig. 4C) ismore biased thanNoPVC+VolSmwhen smoothing
level exceeds 4 mm. The reason for this is due to an interaction between
the volume smoothing and the PVC. TheMGmethod simulates theWM
TAC at each point in the brain, subtracts this TAC from the raw PET, then
divides each voxel by theGMPVF, and thenmasks the TAC based onGM
PVF. Violations of the MG model can manifest themselves in several
ways. The subtraction of the WM from the total PET can result in nega-
tive TACs (and so negative BPND). These negatives are then amplified by
division by the GMPVF. This ismost likely to happen in putative areas of
WM away from GM. Volume smoothing then smoothes these negatives
into the GM thereby reducing signal and possibly creating more bias
than if no PVC was done at all. One can clearly see negative BPND (blue
in themedial wall pointed to by magenta arrows in Fig. 5) at 1% thresh-
old and that the negative area gets larger as smoothing level is in-
creased. Note that the direction of the effect depends upon whether
the synthetic WM TAC at a voxel is over or underestimated. Underesti-
mation will give rise to a positive bias.

This problem at low GM PVF voxels led to modifications to the MG
method in which voxels with low amounts of GM were masked out
(i.e., replaced with zeros). One must choose a threshold to define
which voxels have “low PVF”; thresholds used by other authors range
from 20%–50% (Table 1). The choice of threshold is important. At a
threshold of 1%, the PVC+VolSm is slightly more biased than
NoPVC+VolSm (Fig. 3B). At thresholds of 10–20%, PVC+VolSm has
less bias, but beyond 25% PVC actually creates more bias than not
doing PVC at all. Fig. 6 shows that this is caused by two effects. At 1%
there aremany areas in the volume analysis that have high BPND (bright
yellow; e.g., area pointed to by the second green arrow). As the thresh-
old increases, the estimated BPND decreases (becomes darker red) and,
at 50%, are darker than when no PVC is applied at all (i.e., area pointed
to by the last green arrow darker than that of the first green arrow).
One can also see that there are large areas of negative BPND (blue;
e.g., area pointed to by first magenta arrow) at 1% probably caused by
WM oversubtraction as described above. These negatives cause the
ROI average to drop even when the ROI has areas of high positive
BPND. At 10% and 20%, one can see that the negative regions recede as
negative TACs are masked out (second and third magenta arrows). At
50%, negative regions reappear (forth magenta arrow) because there
are many zero-valued TACs that get smoothed into the unmasked
TACs. This causes the unmasked TACs to have a value less than that of
the reference region, which forces the BPND to be negative. Thus some
of the bias is due to an interaction with kinetic modeling, and some
would be present even if kinetic modeling were not performed.

PVC and surface smoothing

These problems are greatly reduced when MG PVC is used in the
context of the surface-based analysis. Fig. 3A shows that increasing
the FWHMhas very little effect on the bias. Fig. 3B shows that changing
the threshold has very little effect as well. The reason for this is that the
surface sampling selects points that are only well within cortical gray
matter to begin with. This tends to exclude data points where MG PVC
has the most noise amplification or where masking creates zeros. The
surface smoothing then only smoothes among these good data points
and excludesWMandCSF. Problems arise only at thehighest thresholds
where cortical voxels themselves start to be masked out.

Effects on k2

The k2 parameter is the rate constant for transfer from target tissue
to plasma. It is strongly affected by the various preprocessing options
as indicated by Fig. 4A for STG. In general, all k2 values were less than
that of the GTM. Surface smoothing causes k2 estimates to increase
(i.e., become less biased) while volume smoothing causes them to de-
crease (i.e., more biased). PVC caused k2 to be less biased in most ROIs
with the CAC again being an exception. The reasons for this behavior
mirror those for the behavior of BPND discussed above.

Voxelwise intersubject variability

The different pipelines in Fig. 2 reflect different ways to prepare
single-subject data in for cross-subject analysis. While the choice of
pipeline obviously affects the within-subject variance, it also affects
between-subject variance because spatial smoothing creates an interac-
tion with the individual anatomy. Thus, the variance metric should
be sensitive to both within- and between-subject variance (i.e., the
mixed effects variance). For this reason,we have chosen a variancemet-
ric (the CoV) that reflects total cross-subject variance. Smoothing can
reduce this variation in two ways (Worsley et al., 1996). First, it can
reduce the within subject temporal noise by averaging nearby TACs.
This reduces the noise in the MRTM2 parameter estimates and so re-
duces noise in the final BPND measurement (this also reduces noise-
dependent bias). Second, it can improve the effective intersubject align-
ment in cases where intersubject alignment is off by the FWHM. Fig. 3C
shows that the CoV generally decreases with FWHM for all pipelines
(at a threshold of 20%). Given the problems with volume smoothing
mentioned above, onemight be tempted not to smooth at all. However,
one can see that without smoothing (volume or surface) the CoV is 2–3
times greater than when moderate amounts of smoothing are used.
Similar noise reductions are seen in fMRI with smoothing (Strother
et al., 2004). Smoothing is generally advantageous; however, if an effect
is small relative to the smoothing kernel, there is a risk that the smooth-
ing will washout the effect.

Regardless of FWHM, surface smoothing without PVC (NoPVC+
SurfSm) has the best CoV performance. This is because noise from
WM and CSF does not get smoothed into cortex and there is no noise
amplification due to PVC. Note that, while NoPVC+SurfSm has the
best CoV performance, it does not have the best bias performance
(Fig. 3A). The CoV metric used in this study is independent of the bias
metric. For example, if all subjects had the same negative BPND value
at a voxel, the biaswould be high but the CoVwould be zero. So it is pos-
sible that different pipelines or manipulation to a pipeline parameter
can have different effects on bias and CoV, i.e., there is a bias-variance
tradeoff. The CoV performance of volume smoothing without PVC
(NoPVC+VolSm) is only a little worse than the surface-based methods



234 D.N. Greve et al. / NeuroImage 92 (2014) 225–236
at FWHM N 7 mm. While WM and CSF voxels contaminate the GM
voxels, the noise in them has not been amplified by PVC and there are
no zeros getting smoothed in.

PVCwith volume smoothing (PVC+VolSm) has theworst noise per-
formance. As volume smoothing FWHM increases, more voxels from
adjacent WM and CSF are smoothed into GM. These voxels may be
noisy because of noise amplification or because the WM signal has not
been effectively removed or because they have been replaced by
zeros.Whatever the source, the intersubject variability will increase be-
cause the effect depends upon the individual subject's anatomy.

Notably, at a 20% threshold and FWHM of 10 mm, the CoV
for PVC+VolSm is more than twice that of PVC with surface smoothing
(Fig. 3C/D). This means that a study analyzed with PVC+VolSm would
require roughly four timesmore subjects than if it were analyzed using
PVC with surface smoothing to attain comparable statistical power. At
a threshold of 40%, the CoV for PVC+VolSm was four times worse,
meaning that sixteen times more subjects would be needed to attain
comparable power.

Simulation results

Bias of the noiseless simulation results matched the real data quite
well for the surface-based analysis but underestimated the bias for the
volume-based analysis (Fig. 3B). The likely reason for this is that noise
causes additional bias in the BPND estimates (Ichise et al., 2003) that is
not reflected in the noiseless simulation. While there is noise in the
surface-based analysis, the volume-based analysis suffers from a high
degree of noise amplification due to the already documented interac-
tion between volume smoothing and MGPVC.

Limitations

These resultswere derived from [11C]SB207145 data analyzedwith a
one-compartmentMRTM2; however,we fully expect the results to gen-
eralize to other radiotracers and kinetic models. The current study was
performed on a molecular imaging application. While more traditional
PET imaging studies (eg, FDG) are less sensitive to noise because KM
is not used, they will still be susceptible to bias and noise amplification
and so should benefit from surface-based analysis. For example, two of
the FDG studies in Table 1 actually report decreases in PET signal in GM
after PVC, a phenomenon associated with shortcomings in the volume-
based method in this study. The other studies in Table 1 did not test for
decreases caused by PVC.

Only healthy young subjects were studied. However, this methodol-
ogy is not only appropriate for analyses of elderly subjectswith substan-
tial cortical atrophy, itmay even be necessary. FreeSurferwill accurately
model the cortical surface even in cases of extreme atrophy (e.g., see
Salat et al., 2004; Dickerson et al., 2009). Such accurate segmenta-
tion is critical to removing the PVE. Similar surface-based methods
have been applied extensively in fMRI analysis of such populations
(e.g., Dickerson et al., 2004, 2005).

Surface-based methods do not allow for the analysis of subcortical
structures. Subcortical structures are better suited to be analyzed
using a volume-based approach,which employs volume-based smooth-
ing, perhaps constrained to avoid smoothing across subcortical GM and
WM boundaries. This implies separate processing streams for cortical
and subcortical spaces. The details of such a pipeline are beyond the
scope of this manuscript. However, we point out that one has already
been implemented in fMRI4 (e.g., Holzel et al., 2013; Schadwinkel and
Gutschalk, 2011). While we do not foresee a case where a surface-
based analysis is not advantageous, surface-based analysis is technically
4 The FreeSurfer Functional Analysis Steam (FSFAST) surfer.nmr.mgh.harvard.edu/
fswiki/FsFast.
and computationally more challenging than its volume-based counter-
part because: it requires an 8–16 hour FreeSurfer analysis for each sub-
ject; the PET must be sampled to and analyzed on the surface; and the
user must deal with unfamiliar surface formats and visualization.

The voxelwise PVC method used in this paper reflects a common
way in which voxelwise PVC has been applied over the last decade
(Table 1). More recent post-reconstruction PVC methods (e.g., Hutton
et al., 2013) may work better with volume-based smoothing by reduc-
ing noise amplification and replacing masked out values with some-
thing more reasonable than zero, but it is our opinion that smoothing
in a manner that recognizes the actual geometry and anatomy
(i.e., surface-smoothing) of the brain is inherently sensible and more
likely to avoid smoothing-induced noise and bias regardless of the
PVC method used. Surface-based smoothing will improve with these
new methods just as it does MG. Note that we are not in a position to
recommend the GTM PVC over MG PVC because the GTM PVC cannot
be used for voxelwise analysis.

Conclusions

This study explored how PVC and smoothing choices made when
preprocessing PET data affect the performance of exploratory analysis
of cortical regions. Without PVC, volumetric smoothing increased the
BPND bias by reducing signal in gray matter. The bias was much less
when surface smoothing was employed. The use of MG PVC with vol-
ume smoothing reduced bias at some smoothing levels but increased
it at others and often caused a dramatic increase in variance due to
noise amplification and masking. Surface-based smoothing resulted in
substantially less bias without an increase in variance. When used
with PVC, surface smoothing resulted in the standard deviation decreas-
ing by 2–4 times compared to the equivalent volume-smoothed analy-
sis. This translates into at least 4–16 times fewer subjects needed in a
group analysis to achieve the same significance. Surface-based smooth-
ing has less bias and variance because it respects cortical geometry by
smoothing the PET data only along the cortical ribbon and so does not
contaminate the GM signal with that of white matter and cerebrospinal
fluid. Thus, the use of surface-based analysis in PET should result in im-
provements in the reliability and detectability of effects in exploratory
PET analysis, with or without PVC.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.12.021.

Conflict of Interest

Authors declare that there is no conflict of interest.

Acknowledgments

We would like to thank M. Haahr, G. Thomsen, C. Jensen, S. Larsen,
A. Dyssegaard, K. Christiansen, and L. Freyr for their assistance in sched-
uling and data collection at both theMR and PET centers.Wewould like
to gratefully acknowledge The John and BirtheMeyer Foundation for the
donation of the Cyclotron and PET-scanner. We would like to thank the
Danish Research Centre for Magnetic Resonance for the MRI resources.
This study was funded by a center grant to Cimbi from the Lundbeck
Foundation. Support for this research was provided in part by the Na-
tional Institutes of Health grants 5R01EB006758-04, 5R01NS052585-
05, 5R21NS072652-02, P41-RR14075, and R01RR16594-01A1, and by
the Capital Region of Denmark.

References

Becker, J.A., Hedden, T., Carmasin, J., Maye, J., Rentz, D.M., Putcha, D., Fischl, B., Greve, D.N.,
Marshall, G.A., Salloway, S., Marks, D., Buckner, R.L., Sperling, R.A., Johnson, K.A., 2011.
Amyloid-beta associated cortical thinning in clinically normal elderly. Ann. Neurol.
69, 1032–1042.

http://dx.doi.org/10.1016/j.neuroimage.2013.12.021
http://dx.doi.org/10.1016/j.neuroimage.2013.12.021
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0005
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0005


235D.N. Greve et al. / NeuroImage 92 (2014) 225–236
Bourgeat, P., Chetelat, G., Villemagne, V.L., Fripp, J., Raniga, P., Pike, K., Acosta, O., Szoeke,
C., Ourselin, S., Ames, D., Ellis, K.A., Martins, R.N., Masters, C.L., Rowe, C.C., Salvado, O.,
2010. Beta-amyloid burden in the temporal neocortex is related to hippocampal atro-
phy in elderly subjects without dementia. Neurology 74, 121–127.

Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau, B., Lalevee, C.,
Le Doze, F., Dupuy, B., Hannequin, D., Baron, J.C., Eustache, F., 2003. Dissociating atro-
phy and hypometabolism impact on episodic memory in mild cognitive impairment.
Brain 126, 1955–1967.

Chetelat, G., Desgranges, B., Landeau, B., Mezenge, F., Poline, J.B., de la Sayette, V., Viader,
F., Eustache, F., Baron, J.C., 2008. Direct voxel-based comparison between grey matter
hypometabolism and atrophy in Alzheimer's disease. Brain 131, 60–71.

Curiati, P.K., Tamashiro-Duran, J.H., Duran, F.L., Buchpiguel, C.A., Squarzoni, P., Romano,
D.C., Vallada, H., Menezes, P.R., Scazufca, M., Busatto, G.F., Alves, T.C., 2011. Age-
related metabolic profiles in cognitively healthy elders: results from a voxel-based
[18F]fluorodeoxyglucose-positron-emission tomography study with partial volume
effects correction. AJNR Am. J. Neuroradiol. 32, 560–565.

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis I: segmentation
and surface reconstruction. Neuroimage 9, 179–194.

Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L.,
Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated
labeling system for subdividing the human cerebral cortex on MRI scans into gyral
based regions of interest. Neuroimage 31, 968–980.

Dickerson, B., Salat, D., Bates, J., Atiya, M., Killiany, R., Greve, D., Dale, A., Stern, C., Blacker,
D., Albert, M.S., RA, S., 2004. Medial temporal lobe function and structure inmild cog-
nitive impairment. Ann. Neurol. 56, 27–35.

Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., Greve, D.N., Grodstein, F.,
Wright, C.I., Blacker, D., Rosas, H.D., Sperling, R.A., Atri, A., Growdon, J.H., Hyman,
B.T., Morris, J.C., Fischl, B., Buckner, R.L., 2009. The cortical signature of Alzheimer's
disease: regionally specific cortical thinning relates to symptom severity in very
mild to mild AD dementia and is detectable in asymptomatic amyloid-positive indi-
viduals. Cereb. Cortex 19, 497–510.

Dickerson, B.C., Salat, D.H., Greve, D.N., Chua, E.F., Rand-Giovannetti, E., Rentz, D.M.,
Bertram, L., Mullin, K., Tanzi, R.E., Blacker, D., Albert, M.S., Sperling, R.A., 2005. In-
creased hippocampal activation in mild cognitive impairment compared to normal
aging and AD. Neurology 65, 404–411.

Erlandsson, K., Buvat, I, Pretorius, P.H, Thomas, B.A, Hutton, B.F, 2012. A review of partial
volume correction techniques for emission tomography and their applications in
neurology, cardiology and oncology. Physics in medicine and biology 57 (21), R119.

Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc. Natl. Acad. Sci. 97, 11044–11049.

Fischl, B., Salat, D.H., Albert, M., Dieterich, M., Haselgrove, C., Kouwe, A.v.d., Killiany, R.,
Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 2002.
Whole brain segmentation: automated labeling of neuroanatomical structures in
the human brain. Neuron 33, 341–355.

Fischl, B., Sereno, M.I., Dale, A.M., 1999a. Cortical surface-based analysis. II: inflation, flat-
tening, and a surface-based coordinate system. Neuroimage 9, 195–207.

Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M., 1999b. High-resolution intersubject averag-
ing and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284.

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Busa, E.,
Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.,
2004. Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22.

Fisher, P.M., Holst, K.K., Mc Mahon, B., Haahr, M.E., Madsen, K., Gillings, N., Baare, W.F.,
Jensen, P.S., Knudsen, G.M., 2012. 5-HTTLPR status predictive of neocortical 5-HT4
binding assessed with [(11)C]SB207145 PET in humans. Neuroimage 62, 130–136.

Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C., Evans, A.C., 1993. Assessing the
significance of focal activations using their spatial extent. Hum. Brain Mapp. 1,
210–220.

Greve, D., Fischl, B., 2009. Accurate and robust brain image alignment using boundary-
based registration. Neuroimage 48, 63–72.

Haahr, M.E., Fisher, P., Holst, K., Madsen, K., Jensen, C.G., Marner, L., Lehel, S., Baare, W.,
Knudsen, G., Hasselbalch, S., 2012a. The 5-HT(4) receptor levels in hippocampus cor-
relates inversely with memory test performance in humans. Hum. Brain Mapp. 34,
3066–3074.

Haahr, M.E., Rasmussen, P.M., Madsen, K., Marner, L., Ratner, C., Gillings, N., Baare, W.F.,
Knudsen, G.M., 2012b. Obesity is associated with high serotonin 4 receptor availabil-
ity in the brain reward circuitry. Neuroimage 61, 884–888.

Hagler Jr., D.J., Riecke, L., Sereno, M.I., 2007. Parietal and superior frontal visuospatial maps
activated by pointing and saccades. Neuroimage 35, 1562–1577.

Haltia, L.T., Rinne, J.O., Merisaari, H., Maguire, R.P., Savontaus, E., Helin, S., Nagren, K.,
Kaasinen, V., 2007. Effects of intravenous glucose on dopaminergic function in the
human brain in vivo. Synapse 61, 748–756.

Holzel, B.K., Hoge, E.A., Greve, D.N., Gard, T., Cresswell, J.D., Brown, K.W., Lazar, S.W., 2013.
Neural mechanisms of symptom improvements in generalized anxiety disorder fol-
lowing mindfulness training. Neuroimage Clin. 2, 448–458.

Hurlemann, R., Matusch, A., Kuhn, K.U., Berning, J., Elmenhorst, D., Winz, O., Kolsch, H.,
Zilles, K., Wagner, M., Maier, W., Bauer, A., 2008. 5-HT2A receptor density is de-
creased in the at-risk mental state. Psychopharmacology (Berl.) 195, 579–590.

Hutton, B.F., Thomas, B.A., Erlandsson, K., Bousse, A., Reilhac-Laborde, A., Kazantsev, D.,
Pedemonte, S., Vunckx, K., Arridge, S., Ourselin, S., 2013. What approach to brain par-
tial volume correction is best for PET/MRI? Nucl. Inst. Methods Phys. Res. A 29–33.

Ichise, M., Ballinger, J.R., Golan, H., Vines, D., Luong, A., Tsai, S., Kung, H.F., 1996. Noninva-
sive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J. Nucl.
Med. 37, 513–520.

Ichise, M., Liow, J.S., Lu, J.Q., Takano, A., Model, K., Toyama, H., Suhara, T., Suzuki, K., Innis,
R.B., Carson, R.E., 2003. Linearized reference tissue parametric imaging methods:
application to [11C]DASB positron emission tomography studies of the serotonin
transporter in human brain. J. Cereb. Blood Flow Metab. 23, 1096–1112.

Inoue, K., Ito, H., Goto, R., Nakagawa, M., Kinomura, S., Sato, T., Sato, K., Fukuda, H., 2005.
Apparent CBF decrease with normal aging due to partial volume effects: MR-based
partial volume correction on CBF SPECT. Ann. Nucl. Med. 19, 283–290.

Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Kennedy, D.,
Schmitt, F., Brown, G., Macfall, J., Fischl, B., Dale, A., 2006. Reliability in multi-site
structural MRI studies: effects of gradient non-linearity correction on phantom and
human data. Neuroimage 30, 436–443.

Kalpouzos, G., Chetelat, G., Baron, J.C., Landeau, B., Mevel, K., Godeau, C., Barre, L.,
Constans, J.M., Viader, F., Eustache, F., Desgranges, B., 2009a. Voxel-based mapping
of brain gray matter volume and glucose metabolism profiles in normal aging.
Neurobiol. Aging 30, 112–124.

Kalpouzos, G., Chetelat, G., Landeau, B., Clochon, P., Viader, F., Eustache, F., Desgranges, B.,
2009b. Structural and metabolic correlates of episodic memory in relation to the
depth of encoding in normal aging. J. Cogn. Neurosci. 21, 372–389.

Kochunov, P., Ramage, A.E., Lancaster, J.L., Robin, D.A., Narayana, S., Coyle, T., Royall, D.R.,
Fox, P., 2009. Loss of cerebral white matter structural integrity tracks the gray matter
metabolic decline in normal aging. Neuroimage 45, 17–28.

Kraus, C., Hahn, A., Savli, M., Kranz, G.S., Baldinger, P., Hoflich, A., Spindelegger, C.,
Ungersboeck, J., Haeusler, D., Mitterhauser, M., Windischberger, C., Wadsak, W.,
Kasper, S., Lanzenberger, R., 2012. Serotonin-1A receptor binding is positively associ-
ated with gray matter volume—a multimodal neuroimaging study combining PET
and structural MRI. Neuroimage 63, 1091–1098.

Lammertsma, A.A., Bench, C.J., Hume, S.P., Osman, S., Gunn, K., Brooks, D.J., Frackowiak,
R.S., 1996. Comparison of methods for analysis of clinical [11C]raclopride studies.
J. Cereb. Blood Flow Metab. 16, 42–52.

Lammertsma, A.A., Hume, S.P., 1996. Simplified reference tissue model for PET receptor
studies. Neuroimage 4, 153–158.

Logan, J., Fowler, J.S., Volkow, N.D., Wolf, A.P., Dewey, S.L., Schlyer, D.J., MacGregor, R.R.,
Hitzemann, R., Bendriem, B., Gatley, S.J., et al., 1990. Graphical analysis of reversible
radioligand binding from time-activity measurements applied to [N-11C-methyl]-
(-)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10, 740–747.

Marner, L., Gillings, N., Comley, R.A., Baare, W.F., Rabiner, E.A., Wilson, A.A., Houle, S.,
Hasselbalch, S.G., Svarer, C., Gunn, R.N., Laruelle, M., Knudsen, G.M., 2009. Kinetic
modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo.
J. Nucl. Med. 50, 900–908.

Marner, L., Gillings, N., Madsen, K., Erritzoe, D., Baare, W.F., Svarer, C., Hasselbalch, S.G.,
Knudsen, G.M., 2010. Brain imaging of serotonin 4 receptors in humans with [11C]
SB207145-PET. Neuroimage 50, 855–861.

Matsuda, H., Kanetaka, H., Ohnishi, T., Asada, T., Imabayashi, E., Nakano, S., Katoh, A.,
Tanaka, F., 2002. Brain SPET abnormalities in Alzheimer's disease before and after at-
rophy correction. Eur. J. Nucl. Med. Mol. Imaging 29, 1502–1505.

Matsuda, H., Ohnishi, T., Asada, T., Li, Z.J., Kanetaka, H., Imabayashi, E., Tanaka, F., Nakano,
S., 2003. Correction for partial-volume effects on brain perfusion SPECT in healthy
men. J. Nucl. Med. 44, 1243–1252.

Meltzer, C.C., Leal, J.P., Mayberg, H.S., Wagner Jr., H.N., Frost, J.J., 1990. Correction of PET
data for partial volume effects in human cerebral cortex by MR imaging. J. Comput.
Assist. Tomogr. 14, 561–570.

Meltzer, C.C., Zubieta, J.K., Links, J.M., Brakeman, P., Stumpf, M.J., Frost, J.J., 1996. MR-based
correction of brain PET measurements for heterogeneous gray matter radioactivity
distribution. J. Cereb. Blood Flow Metab. 16, 650–658.

Mevel, K., Desgranges, B., Baron, J.C., Landeau, B., De la Sayette, V., Viader, F., Eustache, F.,
Chetelat, G., 2007. Detecting hippocampal hypometabolism in mild cognitive impair-
ment using automatic voxel-based approaches. Neuroimage 37, 18–25.

Muller-Gartner, H.W., Links, J.M., Prince, J.L., Bryan, R.N., McVeigh, E., Leal, J.P., Davatzikos,
C., Frost, J.J., 1992. Measurement of radiotracer concentration in brain gray matter
using positron emission tomography: MRI-based correction for partial volume ef-
fects. J. Cereb. Blood Flow Metab. 12, 571–583.

Park, H.J., Lee, J.D., Chun, J.W., Seok, J.H., Yun, M., Oh, M.K., Kim, J.J., 2006. Cortical surface-
based analysis of 18F-FDG PET: measured metabolic abnormalities in schizophrenia
are affected by cortical structural abnormalities. Neuroimage 31, 1434–1444.

Protas, H.D., Huang, S.C., Kepe, V., Hayashi, K., Klunder, A., Braskie, M.N., Ercoli, L.,
Bookheimer, S., Thompson, P.M., Small, G.W., Barrio, J.R., 2010. FDDNP binding
using MR derived cortical surface maps. Neuroimage 49, 240–248.

Quarantelli, M., Berkouk, K., Prinster, A., Landeau, B., Svarer, C., Balkay, L., Alfano, B., Brunetti,
A., Baron, J.C., Salvatore, M., 2004. Integrated software for the analysis of brain PET/
SPECT studies with partial-volume-effect correction. J. Nucl. Med. 45, 192–201.

Rousset, O., Rahmim, A., Alavi, A., Zaidi, H., 2007. Partial volume correction strategies in
PET. PET Clinics 2, 235–249.

Rousset, O.G., Ma, Y., Evans, A.C., 1998. Correction for partial volume effects in PET: prin-
ciple and validation. J. Nucl. Med. 39, 904–911.

Salat, D.H., Buckner, R.L., Snyder, A.Z., Greve, D.N., Desikan, R.S., Busa, E.,Morris, J.C., Dale, A.M.,
Fischl, B., 2004. Thinning of the cerebral cortex in aging. Cereb. Cortex 14, 721–730.

Samuraki, M., Matsunari, I., Chen, W.P., Yajima, K., Yanase, D., Fujikawa, A., Takeda, N.,
Nishimura, S., Matsuda, H., Yamada, M., 2007. Partial volume effect-corrected FDG
PET and grey matter volume loss in patients with mild Alzheimer's disease. Eur.
J. Nucl. Med. Mol. Imaging 34, 1658–1669.

Schadwinkel, S., Gutschalk, A., 2011. Transient bold activity locked to perceptual reversals
of auditory streaming inhuman auditory cortex and inferior colliculus. J. Neurophysiol.
105, 1977–1983.

Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B., 2004. A hybrid
approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075.

Segonne, F., Pacheco, J., Fischl, B., 2007. Geometrically accurate topology-correction of cor-
tical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26, 518–529.

http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0010
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0010
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0015
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0015
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0015
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0020
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0020
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0025
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0025
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0025
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0025
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0030
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0030
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0035
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0035
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0035
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0040
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0040
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0045
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0045
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0045
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0045
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0050
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0050
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0050
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf1305
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf1305
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf1305
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0055
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0055
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0060
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0060
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0065
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0065
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0070
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0070
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0075
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0080
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0080
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0085
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0085
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0085
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0090
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0090
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0320
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0320
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0320
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0100
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0100
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0105
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0105
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0110
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0110
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0325
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0325
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0120
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0120
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0125
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0125
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0130
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0130
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0130
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0135
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0135
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0135
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0140
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0140
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0145
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0145
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0145
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0150
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0150
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0150
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0155
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0155
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0160
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0160
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0165
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0165
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0165
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0170
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0170
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0175
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0175
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0180
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0180
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0180
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0185
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0185
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0185
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0190
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0190
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0195
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0195
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0200
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0200
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0205
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0205
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0205
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0210
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0210
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0210
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0215
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0215
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0220
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0220
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0220
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0225
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0225
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0225
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0230
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0230
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0235
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0235
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0240
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0240
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0245
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0245
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0250
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0255
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0255
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0255
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0260
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0260
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0260
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0265
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0265
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0270
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0270


236 D.N. Greve et al. / NeuroImage 92 (2014) 225–236
Strother, s, La Conte, S., Hansen, L.K., Anderson, J., Zhang, J., Pulapura, S., Rottenberg, D.A.,
2004. Optimizing the fMRI data-processingpipeline usingprediction and reproducibil-
ity performance metrics: I. A preliminary group analysis. Neuroimage 23, S196–S207.

Sureau, F.C., Reader, A.J., Comtat, C., Leroy, C., Ribeiro, M.J., Buvat, I., Trebossen, R., 2008.
Impact of image-space resolution modeling for studies with the high-resolution re-
search tomograph. J. Nucl. Med. 49, 1000–1008.

Thomas, B.A., Erlandsson, K., Modat, M., Thurfjell, L., Vandenberghe, R., Ourselin, S.,
Hutton, B.F., 2012. The importance of appropriate partial volume correction for PET
quantification in Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 38, 1104–1119.

Uchida, H., Chow, T.W., Mamo, D.C., Kapur, S., Mulsant, B.H., Houle, S., Pollock, B.G., Graff-
Guerrero, A., 2011. Effects of aging on 5-HT(2A) R binding: a HRRT PET study with
and without partial volume corrections. Int. J. Geriatr. Psychiatry 26, 1300–1308.

Van Laere, K., Goffin, K., Casteels, C., Dupont, P., Mortelmans, L., de Hoon, J., Bormans, G.,
2008. Gender-dependent increases with healthy aging of the human cerebral
cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. Neuroimage 39,
1533–1541.

Varnas, K., Halldin, C., Pike, V.W., Hall, H., 2003. Distribution of 5–HT4 receptors in the
postmortem human brain—an autoradiographic study using [125I]SB 207710. Eur.
Neuropsychopharmacol. 13, 228–234.

Woods, R.P., Cherry, S.R., Mazziotta, J.C., 1992. Rapid automated algorithm for aligning
and reslicing PET images. J. Comput. Assist. Tomogr. 16, 620–633.

Worsley, K.J., Marrett, S., Neelin, P., Evans, A.C., 1996. Searching scale space for activation
in PET images. Hum. Brain Mapp. 4, 74–90.

Yanase, D., Matsunari, I., Yajima, K., Chen, W., Fujikawa, A., Nishimura, S., Matsuda, H.,
Yamada, M., 2005. Brain FDG PET study of normal aging in Japanese: effect of atrophy
correction. Eur. J. Nucl. Med. Mol. Imaging 32, 794–805.

http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0330
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0330
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0280
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0280
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0285
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0285
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0290
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0290
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0295
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0295
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0295
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0300
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0300
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0300
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0305
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0305
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0310
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0310
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0315
http://refhub.elsevier.com/S1053-8119(13)01225-1/rf0315

	Cortical surface-based analysis reduces bias and variance in kineticmodeling of brain PET data
	Introduction
	Methods
	Participants
	PET acquisition and preprocessing
	Structural MRI and anatomical analysis
	Surface smoothing
	Multimodal integration
	Spatial processing pipelines
	ROI-based partial volume effect correction
	Voxel-based partial volume effect correction
	Kinetic modeling (KM)
	Performance criteria

	Results
	Discussion
	Kinetic modeling
	No partial volume correction (NoPVC)
	PVC and volumetric smoothing
	PVC and surface smoothing
	Effects on k2
	Voxelwise intersubject variability
	Simulation results
	Limitations

	Conclusions
	Conflict of Interest
	Acknowledgments
	References


