FreeSurfing on the GPU: Accelerating Brain MRI Processing

R. G. Edgar, T. Witzel, N. Schmansky, B. Fischl

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA 02129

The FreeSurfer Suite

FreeSurfer is a set of automated tools developed at the Athinoula A. Mar-
tinos Center for Biomedical Imaging which reconstruct the brain’s cortical
surface from structural MRI data, and overlay functional MRI data onto
the reconstructed surface. A researcher provides a ‘raw’ MRI scan of the
entire head as input, and Freesurfer computes a segmented brain image:

.H

~reeSurfer is used by thousands of researchers worldwide, to study a
nuge variety of different conditions. These include Autism Spectrum
Disorder, Alzheimer’'s Disease, Huntington’'s Disease, schizophrenia and

epilepsy.

The Need for Speed

The current pipeline takes around eight hours to run on a single core of a
Nehalem-class Xeon processor. Although this is adequate for academic
research, clinical usage requires a processing time of one hour or less.
Any longer, and the patient will have to go home and return for a second
appointment.

Acceleration with CUDA

To achieve our goal of clinical usability, we turned to GPU acceleration
using NVIDIA’'s CUDA technology. The thrust package was used for a
number of operations, especially GPU-based parallel reductions.

Acceleration of individual routines in the FreeSurfer suite was generally
straightforward. Many consisted of a large loop over all the image vox-
els (typically 256°), with an independent operation being applied to each.
These mapped onto the CUDA programming model very well, with one
thread taking responsibility for each voxel or column of voxels. Individual
routines generally achieved 10-20x speed-ups with relatively little effort
at optimisation.

ICCS Workshop, Berkeley CA, Jan. 2011

rgeZ2l@nmr.mgh.harvard.edu

http://surfer.nmr.mgh.harvard.edu/

Marshalling the data for the GPU was a more challenging task. The CPU
code made extensive use of three dimensional arrays of structures, with
both zyz and zyx ordering. Consider the datastructure describing a non-
linear transformation:

typedef struct {
int width, height, depth; // Volume size
GCA MORPH NODE =x«xxnodes: // Volume data
// Other scalar data...

} GCA MORPH;

where each GCA_ MORPH _NODE was a 254 byte structure. For the GPU,
the GCA_MORPH had to be repackaged into linear arrays. This made
transfers very slow, taking upwards of 0.5s in this case, of which only
100 ms would be spent on the PCle bus. In contrast, the ‘computation’
time of a given routine would typically be around 200 ms on the CPU, and
20 ms on the GPU. Overall speed-ups could only be achieved when signif-
icant portions of a program were GPU accelerated. Our experience high-
lights the need for new programming paradigms which expose an array-
of-structures model to the programmer, but which implement structure-of-
arrays in the machine.

We developed a templated datastructure to manage volumetric data on
the GPU. This splits into ‘management’ and ‘mutator’ classes. The ‘man-
agement’ class is used by CPU code and takes care of memory alloca-
tion and data transfer. The ‘mutator’ class is used in GPU code, and
provides methods which enable the programmer to access the data via
three dimensional indices, even though the data is stored in pitched linear
memory. We believe that this paradigm of ‘manager’ and 'mutator’ will be
useful even in purely CPU-based code.

We benchmarked our GPU implementation on a Tesla C2050 card, com-
paring the times to a single core of an Intel Xeon W5580 (3.2 GHz) based
workstation. Some sample wall times are shown in the following table,
together with the overall pipeline wall time. Some programs run multiple
times, hence the savings from individual programs do not add up to the
overall reduction in wall time.

Program CPU (h:mm) GPU (h:mm)
Linear Registration 0:19 0:04
Non-linear registration 1:50 0:19
Template Surface 1:00 0:16
Segmentation Statistics 0:09 0:04
Full pipeline 755 4:18

While individual routines are typically 10-20x faster on the GPU, PCle
transfer times and serial sections limit the overall speed-ups of each pro-
gram to around 5x. The overall pipeline speed-up is further reduced by
the programs which have not been accelerated.

Testing was performed at multiple levels. Individual routines were tested
by comparing results from the CPU and GPU implementations run on
known inputs. We also ensured that the inevitable drift in results at the
level of individual routines did not affect the final output by comparing the
segmentations produced by the GPU pipeline to manual segmentations
of thirty brains.

Conclusions

We have made significant progress towards enabling the FreeSurfer
pipeline to run in one hour. A small number of programs dominate the
GPU accelerated pipeline, and we are currently studying how to add
CUDA acceleration to these.

This work also highlights the need for new programming paradigms which
provide better abstractions for scientific programmers. A particular issue
In this is the choice between array-of-structures and structure-of-arrays.
Current languages require too much low-level manipulation of datastruc-
tures, encouraging the adoption of the former approach (which is more
natural) when the latter typically offers far greater performance.

FreeSurfer is a suite of tools used by thousands of medical researchers
worldwide. By adding GPU acceleration, we have come significantly
closer to our ultimate goal of allowing FreeSurfer to be used in a clini-
cal setting.

Acknowledgements

Support for this research was provided in part by the National Cen-
ter for Research Resources (P41-RR14075, and the NCRR BIRN Mor-
phometric Project BIRNO002, U24 RR021382), the National Institute for
Biomedical Imaging and Bioengineering (R0O1EB006758), the National In-
stitute on Aging (AG022381), the National Center for Alternative Medicine
(RC1 AT005728-01), the National Institute for Neurological Disorders
and Stroke (R01 NS052585-01, 1R21NS072652-01), and was made
possible by the resources provided by Shared Instrumentation Grants
1S10RR023401, 1S10RR019, and 1S10RR023043. Additional support
was provided by The Autism & Dyslexia Project funded by the Ellison
Medical Foundation.




