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White matter volume predicts reaction time instability
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bstract

Information processing speed is a central concept in cognitive psychology and neuropsychology. Previous studies have mostly focused on mean
eaction time (RT), and largely ignored intra-individual differences (the standard deviation of the RT: sdRT). Still, intra-individual inconsistency
cross trials has been shown to correlate with age, neurological disorders, intelligence, and performance on cognitive tests. However, sdRT has
ot been correlated with neuroanatomical variables. Such knowledge is important to the understanding of the neurobiological foundation for intra-
ndividual variability. In the present study, white matter (WM) and cortical gray matter (GM) volume obtained from the average of two MR scans
f 71 healthy participants (aged 20–88 years) were correlated with sdRT and mean RT obtained from a 3-stimulus visual oddball task. Negative
orrelations were hypothesized between sdRT and WM and between mean RT and cortical GM volume. These hypotheses were confirmed. The
orrelation between sdRT and WM volume was significant also independently of effects of age, gender, and mean RT, while there was a trend
owards a significant correlation (p = .085) between cortical GM volume and mean RT independently of age. A path model was constructed, showing

hat age and sdRT gave independent contributions to the variance in performance intelligence, and that WM volume predicted performance score
hrough the influence of sdRT. Further, sdRT was a stronger predictor of performance intelligence than mean RT. It is concluded that sdRT and

ean RT may have different neuroanatomical correlates, and that sdRT is related to WM characteristics of the brain.
2007 Elsevier Ltd. All rights reserved.
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. Introduction

Speed of information processing is related to general intelli-
ence (Deary, 2001), brain volume (Walhovd, Fjell, Reinvang,
undervold, Fischl, et al., 2005), and cognitive abilities in nor-
al aging (Salthouse & Ferrer-Caja, 2003), and standardized

europsychological batteries contain speeded tests. Often, speed
f information processing is operationalized as reaction time
RT), usually measured as the mean or median across multiple
rials. This rests on an assumption that inter-trial inconsistencies
an be treated as “noise”, and that the mean constitutes the “sig-

al”. However, an accumulating body of evidence indicates that
he variability of the single trial RT, the intra-individual variabil-
ty, is in itself a measure of cognitive and central nervous system

∗ Corresponding authors at: University of Oslo, Institute of Psychology, POB
094 Blindern, 0317 Oslo, Norway. Tel.: +47 22 84 51 30;
ax: +47 22 84 50 96.

E-mail addresses: k.b.walhovd@psykologi.uio.no (K.B. Walhovd),
ndersmf@psykologi.uio.no (A.M. Fjell).

e
g
i
v
a

(

028-3932/$ – see front matter © 2007 Elsevier Ltd. All rights reserved.
oi:10.1016/j.neuropsychologia.2007.02.022
ion

unction. Jensen (1992) showed that mean RT and variations in
ingle trial RT, even though correlated, have independent com-
onents, both related to the psychometric g. In a review, Hultsch
nd MacDonald (2004) argue that intra-individual inconsistency
cross trials, tasks, and times correlates with age, neurological
isorders, intelligence and performance on cognitive tests. Still,
uch less attention has been devoted to variability across single

rial RTs within the same task, than mean RTs across persons.
hile studies have reported correlations between speed of pro-

essing and measures of brain volume (e.g. Haier, Jung, Head,
Alkire, 2005; Walhovd, Fjell, Reinvang, Lundervold, Fischl,

t al., 2005; Wickett, Vernon, & Lee, 2000), none has investi-
ated relationships between volumetric measures and variability
n single trial RT. The strategy of the present study is to correlate
ariability in single trail RT with volumes of cerebral gray (GM)
nd white matter (WM), and relate this to cognitive function.
Three main hypotheses were tested:

1) Intra-individual variability in RT is negatively correlated
with performance abilities, but not verbal abilities. The
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rationale is that information processing speed is more
important for time-limited cognitive tasks, i.e. performance
abilities, than tasks where speed in itself is irrelevant. In
the present study, the performance tests are speeded and
time-limited, while the verbal tests do not have time limits.
(This is, however, not true for all performance and verbal
tests.)

2) Intra-individual variability in RT is negatively correlated
with WM volume.

Thickness of the myelin sheath is related to nerve
conduction velocity, and correlations between WM char-
acteristics and information processing speed have been
reported (Cardenas et al., 2005; Haier et al., 2005; Tuch
et al., 2005). The significance of WM for cognitive func-
tion is rooted in the spatial distribution of cognitive tasks
in the brain, which typically involves a complex inter-
play between multiple areas, implying that the connections
are important (Colom, Jung, & Haier, 2006; Schmithorst
& Holland, 2006). Several previous studies, using differ-
ent methods, e.g. diffusion tensor imaging (Schmithorst,
Wilke, Dardzinski, & Holland, 2005) and measurements
of N-acetylaspartate in WM (Jung et al., 1999, 2005), have
reported relationships between WM characteristics and gen-
eral intelligence. A relationship between intra-individual
variability in RT and WM would fit well with the fact that
WM volume mainly consists of myelinated neural con-
nections, and that a high degree of myelinization yields
better isolation and hence more stable flow of electrical
currents in dendrites and axons. Deficient myelinisation
and neural noise can cause disruptions in the efficiency of
the conduction of the action potential along the axon, and
WM alterations may thus be a possible mechanism related
to intraindividual variability in e.g. reaction time (Russell
et al., 2006). Neural noise, caused by information loss
(Myerson, Hale, Wagstaff, Poon, & Smith, 1990), or even
random breaks in neural networks (Cerella, 1990), has also
been implicated in age decline in cognitive performance.
The connection between intraindividual variability and WM
is further supported by evidence showing that WM vol-
ume increases until middle-age, before declining (Walhovd,
Fjell, Reinvang, Lundervold, Dale, et al., 2005; Walhovd,
Fjell, Reinvang, Lundervold, Eilertsen, et al., 2005), and
that this quadratic, inverse U-form may fit with the nonlin-
ear changes in intraindividual variability with increasing
age (Li et al., 2004; MacDonald, Nyberg, & Bäckman,
2006; Williams, Hultsch, Strauss, & Hunter, 2005). The
WM hypothesis is intriguing, because it relates the variabil-
ity directly to flow of information in the CNS. This fits nicely
also with models of neuromodulatory effects on variability.
For instance, computational modeling has shown that reduc-
tions in dopamine levels will increase the intra-individual
variability in RT (Li, Lindenberger, & Frensch, 2000). In
sum, there is a possible correlation between WM volume

and single trial variation in RT: less myelin may yield more
neural noise and instability in the communication between
areas. We expect correlations with single-trial variation in
RT to be higher for WM than for cortical GM volume, since
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myelinization is especially important for stability of signal
conduction.

3) Mean RT is negatively correlated with cortical GM volume.
This is based on the reasoning that cortically distributed
processing is needed to make decisions regarding stimulus
classification, response selection and execution. Cautions
must be noted, however. First, as argued by Haier et al.
(2005), there is no clear empirical basis for predicting
the directions of any correlations between RT and specific
regional brain volumes. Haier et al. found that several Brod-
man areas differed between a group of middle-aged and a
group of elderly participants, such that less GM was related
to slower RTs in a memory task in the middle-aged group,
but to faster RTs in the group of elderly. However, Walhovd,
Fjell, Reinvang, Lundervold, Fischl, et al. (2005), in a pre-
vious publication from the present study, found that the
latency of the event-related component P3a correlated neg-
atively with cortical GM volume, but only when age was
not regressed out. Further, it was found that the P3a latency
and cortical volume complementary predicted score on the
performance scale of Wechsler’s Abbreviated Scale of Intel-
ligence (WASI; Wechsler, 1999). Thus, this issue is not
settled. Second, correlations also between mean RT and WM
characteristics can be expected (Tuch et al., 2005). Haier et
al. (2005) found that simple RT correlated negatively with
WM in the right fusiform gyrus. The basis for this specific
correlation is unclear, and no coherent set of findings exists
to guide hypotheses regarding the exact nature of WM-
RT correlations. However, a negative WM-RT correlation
is expected.

If these hypotheses are confirmed, we will use structural equa-
ion modeling to construct and test a path model of relationships
etween mean RT and intra-individual variability in RT, WM
nd cortical GM volume, age, and performance ability.

. Methods

.1. Sample

Participants were recruited among employees from a local hospital, through
harity organizations, activity centers for the elderly, and newspaper ads. All
ave informed consent, and were screened by interview for conditions known to
ffect CNS-functioning (see Walhovd and Fjell, 2002). Further, Beck Depression
nventory (BDI; Beck & Steer, 1987), Wechsler Abbreviated Scale of Intelli-
ence (WASI; Wechsler, 1999), and the Mini Mental Status Exam (MMSE;
olstein, Folstein, & McHugh, 1975) were administered. The final sample
onsisted of 71 participants (40 females), aged 20–88 years (mean = 52.1). Par-
icipants were given a moderate sum of money to refund possible costs, and were
equired to have normal or corrected to normal vision, a MMSE score >25 (range
6–30, mean = 28.9), a BDI score <15 (range 0–14, mean = 4.3, administered to
3 of 71 participants), and an IQ score of ≥85 (range 85–134, mean = 114).

.2. Reaction time task
RT was recorded during a three-stimuli visual oddball task with a total of
10 stimuli in an event-related potential (ERP) experiment. The ERP-data are
eported elsewhere (Walhovd, Fjell, Reinvang, Lundervold, Fischl, et al., 2005).
n overview of the task is presented in Fig. 1. Target and standard probabil-

ty were both .10. Participants were instructed to press a button when seeing a
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Fig. 1. Overview of the task. The reaction times were recorded in a 3-stimuli
oddball task performed under an ERP-experiment. The task was to push a button
as fast as possible whenever the larger of two elliptic shapes were presented. The
large ellipse was the target, and a small ellipse was the standard. In addition, a
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istractor stimuli (a large square) was presented on some trials. The task included
total of 210 stimuli, with 80% standards and 10% targets and distractors.

nter-stimulus interval was 1.5 s, and each stimulus was presented for 0.5 s.

arget stimulus, and ignore the standard and distractor stimuli. Standards were
lue elliptic shapes (height 15 cm, width 12.5 cm), targets were blue elliptic
hapes (height 17.5 cm, width 14.5 cm), and distractors were blue rectangles
21 cm× 17 cm). In the string of the 168 standards, 21 distractors and 21 targets
ere presented at random intervals. Stimuli were presented on a 21-in. computer

creen with a black background, with a visual field of about 9◦ × 7◦, 10◦ × 8◦,
nd 12◦ × 10◦ for standards, targets, and distractors, respectively. Wiewing
istance was 100 cm. Presentation time was 0.5 s and ISI was 1.5 s. Before
ecording, an example with eight standard and three target stimuli was presented
o prime participants for the task and ascertain that all could discriminate targets
rom standards. The example was repeated if necessary. Participants were asked
o press the button as fast as they could, but prioritize few errors over fast reaction
imes. Cut-off criteria for task performance were set to 20% target misses, 20%
esponses to standards, or 25% responses to distractors. All participants but one
erformed above these criteria, yielding the above described n = 71.

In multi-trial tasks, there is a risk that RT on some trials can deviate much
rom the rest, e.g. RT on the first trial. Inter-item reliability analysis of the 21
rials was performed to check whether any were deviant and should be excluded.
n these analyses, missing values were replaced by values inferred from linear
nterpolations. Cronbach’s alpha was .96 and mean inter-item correlation was
60, indicating high inter-item reliability. Inspections of the corrected item-total
orrelations revealed that trial 1 and 21 had lower correlations than the other
9 items, with r’s of .38 and .23, respectively. The third lowest correlation
oefficient was .49. Thus, trials 1 and 21 were excluded from the rest of the
nalyses, yielding a new alpha of .97. Odd–even analyses were then computed,
ielding correlations for mean RT of .99 (p < .0001) and for intra-individual
ariability in RT (sdRT, see below) of .90 (p < .0001). Together with the high
ronbach’s alpha value, this indicates that both the mean RT and the sdRT have

ome degree of stability.

.3. Intelligence testing
WASI measures verbal and performance abilities and consists of four subtests
hich were used to calculate an age-adjusted IQ-score. In addition, a perfor-
ance and a verbal score not adjusted for age were computed. This was done by

alculating a mean T-score using the sample mean and standard deviations, for
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able 1
ample characteristics

Total sample (n = 71) mean (S.D.)

ge 51.9 (20.6)
Q 114 (10)

ean RT (ms) 505 (74)
dRT (ms) 85 (31)
dRT normalized (ms) 0 (0)
ortical GM volume (mm3) 463385 (61139)
M volume (mm3) 388289 (55967)

ntracranial volume (mm3) 1582074 (103295)

T: reaction time; WM: white matter; sdRT: the standard deviation of the RT; sdRT
dRT.
hologia 45 (2007) 2277–2284 2279

he two time-limited performance subtests; matrix reasoning and block design,
nd a mean T-score for the two verbal subtests; similarities and vocabulary,
hich are not time limited. The mean IQ in the total sample and on the female

nd male part is presented in Table 1.

.4. MRI scanning and volumetric analyses

A Siemens Symphony Quantum 1.5 T MR scanner with a conventional head
oil was used. The pulse sequences used for morphometric analysis were: two
D magnetization prepared gradient echo (MP-RAGE), T1-weighted sequences
n succession (TR/TE/TI/FA = 2730 ms/4 ms/1000 ms/7◦, matrix = 192× 256,
OV = 256 mm), with a scan time of 8.5 min per volume. Each volume con-
isted of 128 sagittal slices with slice thickness = 1.33 mm, and in-plane pixel
ize of 1 mm× 1 mm. All scans were segmented as described by Fischl et al.
2002), yielding volumetric data for cortical GM volume and WM volume.
he results of manual labeling using the validated techniques of the Center for
orphometric Analysis (Caviness, Filipek, & Kennedy, 1989; Goldstein et al.,

999; Kennedy, Filipek, & Caviness, 1989; Seidman et al., 1999) are used to
utomatically extract the information required for automating the segmentation
rocedure. This procedure automatically assigns a neuroanatomical label to each
oxel in an MRI volume based on probabilistic information automatically esti-
ated from a manually labeled training set. Briefly, the segmentation is carried

ut as follows. First, an optimal linear transform is computed that maximizes
he likelihood of the input image, given an atlas constructed from manually
abelled images. Next, a nonlinear transform is initialized with the linear one,
nd the image is allowed to further deform to better match the atlas. Finally, a
ayesian segmentation procedure is carried out, and the maximum a posteriori

MAP) estimate of the labeling is computed. The segmentation uses three pieces
f information to disambiguate labels: (1) the prior probability of a given tissue
lass occurring at a specific atlas location, (2) the likelihood of the image given
hat tissue class, and (3) the probability of the local spatial configuration of labels
iven the tissue class. This latter term represents a large number of constraints
n the space of allowable segmentations, and prohibits label configurations that
ever occur in the training set. The technique has previously been shown to
e comparable in accuracy to manual labeling (Fischl et al., 2002). Intracranial
olume (ICV) was calculated based on proton density- (PD) weighted low-flip
ngle FLASH scans obtained during the same scanning session as the scans
sed for automatic labeling. A deformable template procedure, similar to the
Shrink Wrapping” procedure described by Dale and Sereno (1993) and Dale,
ischl, and Sereno (1999), was used to obtain an estimate of the smooth surface
urrounding the intracranial space (containing brain, CSF, and meninges).

Left and right hemisphere WM both correlated .999 with total WM volume,
nd left and right cortical GM volume correlated .997 and .996 with total cortical
M volume, respectively. Thus, all analyses were done with total WM and total

ortical GM volume, not with volumes for each hemisphere separately. Mean
nd S.D. for cortical GM, WM, and intracranial volume are presented in Table 1.
.5. Statistical analyses

WM and cortical GM volume values were summed across hemispheres and
egressed on intracranial volume. The standardized residuals were used in all

Females (n = 40) Males (n = 31)

48.4 (20.1) 56.5 (20.6)
112 (10) 115 (10)
509 (75) 500 (73)
84 (32) 87 (29)
−0.09 (0.88) .11 (1.13)
453153 (57282) 476588 (64317)
375574 (38894) 404695 (69632)
1506811 (948375) 1679186 (126494)

normalized: the residuals after the effect of mean RT is regressed out from the
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Table 3
Partial correlations between RT measures and cognitive ability and brain vol-
umetry, controlling for the effect of age

Mean RT sdRT Normalized sdRT

Performance ability −.05 −.31 −.34
Verbal ability .04 −.01 −.03
WM volume −.09 −.30 −.30
Cortical volume −.21 −.14 −.03

RT: reaction time; sdRT: standard deviation of the reaction time; normalized
sdRT: sdRT/mean RT. Bold characters indicate p < .05.

Table 4
Partial correlations between RT measures and cognitive ability and brain vol-
umetry, controlling for the effects of age and gender

Mean RT sdRT Normalized sdRT

Performance ability −.03 −.32 −.36
Verbal ability .05 −.01 −.04
WM volume −.10 −.30 −.29
Cortical volume −.22 −.14 −.03
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nalyses. This approach is commonly used (Van Petten, 2004), and was chosen
o remove variance associated with head size, which is related to variables such
s general body size and gender (Peters et al., 1998). Two measures of intra-
ndividual variability in RT were used. sdRT is the standard deviation of the RT’s
or each participant. Since sdRT and mean RT are expected to correlate, we also
omputed a normalized sdRT, where the effect of mean RT was regressed out,
nd the standardized residuals were used in the analyses.

Pearson correlations between RT (mean RT, sdRT, normalized sdRT) and
ognition (performance and verbal score), age, and brain volumes (WM, cor-
ical GM volume) were computed. The relationships were re-tested by partial
orrelations controlling for the effect of age, and for the effect of age and gen-
er. To test whether gender interacted with any of the independent variables, all
he significant relationships were re-tested by multiple regression analyses. In
hese analyses, each dependent variable was simultaneously predicted from the
ndependent variable it correlated with, in addition to gender, and the interaction
f gender and the independent variable. If the interaction term was significant,
t was concluded that gender had an effect on the observed relationship between
he dependent and the independent variables. The same question was also tested
ith regard to age, where the same procedure of testing age-interactions by
ultiple regression analyses was performed.

Outlier analyses were performed based on calculating the studentized deleted
esiduals and the standardized predicted values. First, these were correlated.
orrelations close to zero indicate that the residuals are non-related to the pre-
icted variables, and thus that there are not general tendencies for outliers to
trongly influence the observed relationships in certain directions. Next, indi-
idual occurrences of large studentized deleted residuals were inspected, leading
o re-calculation of the correlations with a sample where all observations with

value of the square root of the square of the studentized deleted residual
xceeding 2.5 were excluded.

Finally, a path model was constructed, with age as the single exogenous
ariable, performance score as the dependent variable, and WM, cortical GM
olume, sdRT, and mean RT as mediators. Paths were drawn between all vari-
bles and performance score, from WM and cortical GM volume to sdRT and
ean RT, from WM to cortical GM volume, and from sdRT to mean RT. The

trategy was to test both the goodness of fit of the model, and the significance
f each individual path. In case of insignificant paths, these were removed with
criterion of p≥ .10 (as is usual in stepwise approaches), and the model was

ested again.
Amos 5 software was used for the path analyses (maximum likelihood

ethod for fitting the model function), and SPSS 12.0.1 was used for the rest of
he statistical analyses.

. Results
First, mean RT and sdRT, with and without gender, age, and
CV regressed out, were correlated with the thickness of the
erebral cortical GM continuously across the brain surface. The
alse discovery rate was set to 0.05, and no results survived this

o
w
s
y

able 2
orrelations between the different variables of interest

2 3 4

1) Mean RT .56 .00 −.14
2) sdRT .83 −.36
3) Normalized sdRT −.34
4) Performance ability
5) Verbal ability
6) WM volume
7) Cortical GM volume
8) Age
9) Gender (female = 1, male = 2)

T: reaction time; sdRT: the intra-individual standard deviation of the rt; normalized
M: white matter volume; GM: gray matter volume. Bold characters indicate p < .05
T: reaction time; sdRT: standard deviation of the reaction time; normalized
dRT: sdRT/mean RT. Bold characters indicate p < .05.

orrection. Thus, total cortical GM volume was used in further
nalyses.

Mean RT correlated negatively with cortical GM volume,
nd sdRT and normalized sdRT both correlated negatively with
erformance ability and WM volume (Table 2). Scatterplots
epicting individual data points for females and males sepa-
ately are shown in Fig. 2. The significant relationships were
onfirmed by partial correlations controlling for the effect of
ge, rendering the correlation between mean RT and cortical GM
olume only marginally significant (r =−.21, p = .083, Table 3).

final partial correlation analysis where both age and gender
ere controlled for were computed, yielding almost identical

esults (Table 4). To formally check whether gender interacted
ith any of the independent variables to predict the mean RT

r sdRT, multiple regression analyses were performed. This
as done in those cases where sdRT or mean RT correlated

ignificantly with any other variable of interest. In these anal-
ses, an interaction term of gender and the variable of interest

5 6 7 8 9

.01 −.15 −.25 .15 −.06
−.03 −.35 −.24 .19 .05
−.05 −.32 −.12 .13 .10

.46 .41 .60 −.67 −.03
−.08 .15 −.14 .07

.57 −.50 −.21
−.78 −.19

.20

sdRT: the residuals of the sdRT when the influence of mean rt is regressed out;
.
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Fig. 2. Scatterplots showing the relationship between individual data points and white matter and cortical volume. The brain volumes are regressed on intracranial
volume, and the standardized residuals (S.D.) are presented. Mean RT is mean reaction time in a 3-stimuli oddball task. The sdRT is the standard deviation of the
reaction times for the single trials. The normalized sdRT is the sdRT where the influence of mean reaction time is regressed out, and the standardized residuals are
presented (S.D.). Green circles and lines represent females, while blue circles and lines represent males. The Pearson correlation coefficients are presented in the top
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ight corner of each square. * indicates that p < .05.

ere added to the list of predictors. Thus, sdRT and normalized
dRT were predicted from age, performance abilities, gender,
nd the interaction of performance abilities and gender. Fur-
her, sdRT and normalized sdRT were predicted from age, WM
olume, gender, and the interaction of WM volume and gen-
er. Finally, mean RT was predicted from age, cortical GM
olume, gender, and the interaction between gender and cor-
ical GM volume. In all but one case was the interaction term
ot significant. However, performance abilities× gender con-
ributed independently in the prediction of sdRT (standardized
=−1.57, t =−2.19, df = 4.66, p < .05). A follow up analysis

howed that the partial correlation (controlling for age) between
erformance scores and sdRT was −.25 (df = 37, p = .12) in
he female and −.45 (df = 28, p < .05) in the male part of the
ample.

The same strategy was then used to test whether the observed
elationships were different at different ages. This was done
or all the significant relationships from the correlation anal-
ses. Cortical GM volume was first simultaneously predicted
rom mean RT, age and the interaction of mean RT and age,
nd then from rtSD, age, and the interaction of rtSD and age.

hite matter volume was first predicted from rtSD, age, and
he interaction of rtSD and age, and then from the normal-
zed sdRT, age, and the interaction of the normalized sdRT
nd age. Finally, performance ability was predicted first from

ean RT, age and the interaction of mean RT and age, and then

rom rtSD, age, and the interaction of rtSD and age. In none
f these analyses did the interaction term even approach signifi-
ance (all p’s > .40). Thus, the relationships between the different

−
p
t
p

ariables of interest do not seem to be different at different
ges.

.1. Outlier analysis

To check whether the observed relationships were depen-
ent upon single extreme observations, outlier analyses were
erformed. First, for each of the four significant partial correla-
ions where age was controlled for, a multiple regression analysis
ith age as one of the predictors were computed, and the stu-
entized deleted residuals and the standardized predicted values
ere saved and correlated. Near-zero correlation would indi-

ate that there are no systematic relationship between potential
utliers and the criterion variable. The values obtained for the
our correlations tested ranged between −.003 and .01, indicat-
ng that the relationships observed were not mainly caused by
utliers. Next, we searched for large values of the studentized
eleted residuals. Inspection of the data revealed that values of
bout ±2.5 seemed to be a reasonable criterion for defining an
bservation as an outlier. Thus, the four analyses were repeated
ith observations exceeding this criterion deleted, reducing n to
0 for these analyses. This lowered the correlations somewhat,
ith correlations between sdRT and performance ability drop-
ing from −.31 to −.27, between sdRT and WM from −.30 to
.25, and between the normalized sdRT and WM from−.30 to

.26, while the correlation between the normalized sdRT and

erformance ability remained−.34. However, all these correla-
ions were still significant. Thus, the observed relationships are
robably not dependent upon single extreme values.
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Fig. 3. Path models of age, morphometric variables, reaction time, and performance ability. Two models were constructed and tested. The first model is based on the
hypotheses put forth in the study, as well as on the correlations between the variables included. The hypothetical causal relationships between variables are indicated
by arrows, and the standardized partial regression weights are printed for each. The paths with p’s > .05 in the first model were removed, and the new model tested
again. In the new model, all paths except the one from cortical gray matter to mean RT (reaction time) are significant, the latter being only marginally significant
( oth models, with relative Chi-squares of less than 1 and rmsea of .000 in both cases,
i
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Table 6
Estimates from the second path model

Estimate S.E. C.R. >p

WM volume← age −.024 .005 −4.831 .001
Cortical volume← age −.032 .004 −7.965 .001
sdRT←WM volume −.012 .004 −3.066 .01
Cortical volume←WM volume .247 .082 3.016 .01
Mean RT← cortical volume −.013 .008 −1.720 .085
Performance ability← sdRT −66.851 22.590 −2.959 .01
Mean RT← sdRT .944 .229 4.123 .001
Performance ability← age −.273 .037 −7.364 .001

E
r

R

p = .085). The relative Chi-square and rmsea indicated good fit to the data for b
ndicating that both models were non-significantly different from a perfect fit.

.2. Path analysis

A path model was constructed where age was treated as the
nly exogenous variable, and the criterion variable was perfor-
ance score. Performance score, rather than verbal score, was

hosen as the criterion variable for the path analysis based on
he weak correlations between verbal score and the other vari-
bles. The model is shown in Fig. 3. Direct paths were drawn
rom all variables to performance score, from age to WM and
ortical GM volume, from WM to cortical GM volume, from

M and cortical GM volume to sdRT and mean RT, and from
dRT to mean RT. This model yielded a very good fit to the
ata, satisfying the criterion of the relative Chi-square being
ess than 2 (cmin 0.578/2 df = 0.293, and rmsea = .000) and also
eing non-significantly different from a perfect fit (p = .746) (see

able 5). The insignificant paths between the volumetric vari-
bles and performance ability, between cortical GM volume and
dRT, between WM volume and mean RT, and between mean

able 5
stimates from the first path model

Estimate S.E. C.R. >p

M volume← age −.024 .005 −4.831 .001
ortical volume← age −.032 .004 −7.965 .001
ortical volume←WM
volume

.247 .082 3.016 .01

dRT←WM volume −.012 .005 −2.630 .01
dRT← cortical volume .001 .005 .205 n.s.
ean RT← cortical volume −.019 .009 −2.012 .05
ean RT← sdRT 1.017 .237 4.282 .001
ean RT←WM volume .010 .010 1.018 n.s.

erformance ability← sdRT −81.079 26.036 −3.114 .01
erformance
ability← cortical volume

2.025 1.267 1.598 n.s.

erformance ability← age −.211 .057 −3.705 .001
erformance ability←WM
volume

−.399 .959 −.416 n.s.

erformance ability←mean
RT

13.837 11.666 1.186 n.s.

stimate: unstandardized partial coefficients; S.E.: standard error; C.R.: critial
atio; n.s.: not significant (p > .05).
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stimate: unstandardized partial coefficients; S.E.: standard error; C.R.: critial
atio; n.s.: not significant (p > .05).

T and performance were removed, and the model tested again.
he relative Chi-square was now 0.689 (cmin 4.824/7 df, and

msea = .000), and the model was still non-significantly different
rom a perfect fit (p = .681) (see Table 6). All paths were now
ignificant, except a marginally significant path from cortical
M volume to mean RT (p = .085).

. Discussion

As hypothesized, intra-individual variability in RT correlated
egatively with performance abilities, but not verbal abili-
ies. This is in accordance with previous research (Hultsch

MacDonald, 2004). The reasoning is that increased vari-
bility is a sign of cognitive instability, which is detrimental
or performance in tasks requiring speeded and efficient pro-
essing of information, and which poses high loads on the
ttentional system. In the present study, the performance tests
ere time-limited and required fast processing and responses.

n contrast, the verbal ability tests used were not time-limited,
epend more on memory and previous learning, and were thus
robably less vulnerable to small inconsistencies or instabili-
ies in the information processing stream. The new contribution

rom the present study is identification of negative relationships
etween intra-individual variability and brain morphometry. We
ypothesized that intra-individual variability would correlate
egatively with WM volume, even when the effect of mean RT
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as regressed out. The data confirmed this hypothesis, showing
oderate correlations. Thus, WM characteristics were related

o the stability of information processing and response execu-
ion in a relatively simple reaction time task. This fits well with
he fact that WM volume mainly consists of myelinated neural
onnections, and that a high degree of myelinization yields bet-
er isolation and hence more stable flow of electrical currents in
endrites and axons. As argued in the introduction, reductions
n thickness of myelin sheaths may have a similar effect on the
tability of signal transduction as reduced levels of neurotrans-
itters. Further, myelin thinning may cause the age decline in

ognitive performance by leading to stepwise information loss
ue to neural noise (Myerson et al., 1990), or even random breaks
n neural networks (Cerella, 1990).

Mean RT correlated negatively with cortical GM volume,
s hypothesized, and no significant age-interaction was found.
owever, the relationship was mainly age-dependent, since the
-value dropped to .085 when age was regressed out. This result
tands in contrast to Haier et al. (2005), who found negative
orrelations in middle-aged, but positive correlations in elderly.
ven though this result was obtained in a memory task, and
o significant results were obtained with simple reaction time,
t is evident that more research is required before conclusions
egarding the relationship between RT and GM can be drawn.
till, since a weak negative correlation was found in the present
tudy, it is interesting that mean RT was non-correlated with

M volume. This indicates that WM may be more related
o the stability of information processing, than the speed of
he processes themselves. An implication is that even though
esponse variability and mean RT is moderately correlated, the
wo variables are predicted by different neuroanatomical traits.
he path model with paths from WM to sdRT and from corti-
al GM to mean RT yielded an excellent fit to the data. This
upports Jensen’s (1992) view that variability and mean RT
re two fundamentally different properties of the human cog-
itive system. As Jensen (1982, p. 10) suggested: “Variability
f RTs would seem to have priority over the average speed of
Ts. Assuming an inherent periodicity in the nervous system,

he average speed of RT can be seen as a consequence of vari-
bility of RT more easily than the reverse relationship”. The
resent results indicate that the intra-individual variability of RT,
ere operationalized as sdRT, deserves more attention in neuro-
cience and neuropsychology than what has previously been the
ase.

In the present paper, we have drawn a distinction between
peeded performance tests and non-speeded verbal tests. How-
ver, it is not possible from the present data to distinguish
etween effects of speed and effects of the fact that the per-
ormance tests are spatial, while the verbal tests are not. Thus,
t is possible that WM volume affects spatial, right hemisphere
rocesses, but not verbal left hemisphere processes, and that
he speeded versus non-speeded distinction is less important
n this regard. Thus, correlations between performance abil-

ty and sdRT or neuroanatomical volume cannot with certainty
e explained as related to speed-of-processing per se. Rourke
1987) has suggested that nonverbal learning disabilities is
elated to damage to the right hemisphere white matter function.
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urther studies are needed to disentangle the effects of ver-
al versus nonverbal and speeded versus non-speeded tests and
heir interactions with neuroanatomical volume and cognitive
bilities.

.1. Limitations and future research

The RTs in this study were taken from a task designed as an
RP-paradigm, and will therefore differ somewhat from other

asks often used in cognitive experiments. Even though partici-
ants were instructed to respond as fast as possible, accuracy was
tressed as the most important. We expected, but did not find cor-
elations between age and mean RT or sdRT. This may be related
o motivational factors differing between older and younger par-
icipants, or the generally high level of functioning in the present
ample. Further, possibly related to this, we did not find correla-
ions between RT and performance intelligence. A more suitable
nstruction would be to stress the importance of fast RT over
ccuracy. Still, RT and especially normalized sdRT correlated
ignificantly with neuroanatomical variables in expected direc-
ions, indicating that the task probably yielded valid results.
urther research should replicate the present finding with dif-
erent types of RT tasks and different instructions. Also, it will
e interesting to relate RT variability to DTI measures, a WM
easure that may be more related to cognitive factors. Finally, a

esearch protocol that allows a distinction between decision time
nd movement time would make it possible to pinpoint central
ersus peripheral nervous system contributions to RT and sdRT,
nd their relationship with brain anatomy and cognitive function.
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L. Bäckman, & L.-G. Nilsson (Eds.), New frontiers in cognitive aging (pp.
65–88). Oxford, Great Britain: Oxford University press.

ensen, A. (1982). Reaction time and psychometric g. In H. J. Eysenck (Ed.), A
model for intelligence. Berlin: Springer.

ensen, A. (1992). The importance of intraindividual variation in reaction time.
Personality and individual Differences, 13, 869–881.

ung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D., & Sibbitt,
W. L. (1999). Biochemical markers of intelligence: A proton MR spec-
troscopy study of normal human brain. Proceedings of the Royal Society of
London—Biological Sciences, 1426, 1375–1379.

ung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine,
A. S., Sibbitt, W. L., & Brooks, W. M. (2005). Sex differences in N-
acetylaspartate correlates of general intelligence: An 1H-MRS study of
normal human brain. NeuroImage, 26, 965–972.

ennedy, D. N., Filipek, P. A., & Caviness, V. S. (1989). Anatomic segmentation
and volumetric calculations in nuclear magnetic resonance imaging. IEEE
Transactions on Medical Imaging, 8, 1–7.

i, S.-C., Lindenberger, U., & Frensch, P. A. (2000). Unifying cognitive aging:
From neuromodulation to representation to cognition. Neurocomputing,
32–33, 879–890.

i, S.-C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes,
P. B. (2004). Transformations in the couplings among intellectual abili-
ties and constituent cognitive processes across the life span. Psychological
Science, 15, 155–163.
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