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In this paper, we draw a link between cortical intrinsic curvature and the distributions of tangential
connection lengths. We suggest that differential rates of surface expansion not only lead to intrinsic
curvature of the cortical sheet, but also to differential inter-neuronal spacing. We propose that there
follows a consequential change in the profile of neuronal connections: specifically an enhancement of the
tendency towards proportionately more short connections. Thus, the degree of cortical intrinsic curvature
may have implications for short-range connectivity.
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1. Introduction

In comparison to shrews, humans have a six-
fold increase in cortical thickness, but a 1,700-fold
increase in cortical surface area.! This expansion is
driven by an increase in the number of functional
units, rather than an increase in the complexity of
those units,? and results in an increase in the degree
of folding of the cortex (gyrification) to accommo-
date a large surface area within the volume of the
cranium. At a cellular level, expansion is commen-
surate with a decrease in neuronal density and an
increase in inter-cellular spacing.?# In this paper we
consider the implications of this observation in terms
of how differential rates of cortical expansion lead
to altered neuronal spacing and connectivity. Given
that such differential expansion inevitably leads to
intrinsic curvature of the cortical surface, we suggest
that, in view of this relationship, measurements of
intrinsic curvature may offer insights to small-scale
connectivity.

To start, it is worth considering certain princi-
ples of cortical connectivity. In diverse systems from
C. Elegans,® to macaque visual cortex,® a distance-
dependent distribution of connection lengths has
been demonstrated: namely a large peak of short
connections and a flatter tail representing longer
connections. This is essentially the characteristic of
small-world architecture,®” which has been repeat-
edly shown in humans using a range of functional
and morphological brain data (fMRI, EEG, cor-
tical thickness, DTI, tract-tracing) at many lev-
els, from brain-wide networks,® 1° through to the
wiring at a neuronal level.'’ Small-world networks
are characterized by densely clustered local connec-
tions, in combination with relatively sparse longer-
range projections.”>” This type of arrangement is
highly efficient, supporting both local specialization,
as well as system-wide integration.

The distribution of neurons in the cortex is not
perfectly crystalline, however if this non-uniform spa-
tial distribution is further augmented in some way,
it will lead to an additional increase in the propor-
tion of short-term connections beyond the default
preponderance described above, i.e. the distribu-
tion of connection lengths is additionally skewed
due to the increase in the unevenness of the spa-
tial distribution of neurons. A non-uniform distri-
bution of neurons might arise either as a result of

non-uniform neuronal proliferation, or differential
surface expansion.

That differential expansion may result in an
increase in the proportion of short connections may
be explained by considering a simple case of points on
a line. As the points undergo first uniform, then dif-
ferential expansion, we can intuit how the histogram
of distances between the points changes. In the case
of the former, under uniform expansion, the distance
between points remains constant. For example, if the
points on the line are evenly spaced, the initial his-
togram of distances between points will consist of
a single bin representing all points. Under uniform
expansion the position of the bin will increase along
the length-scale, however all points will remain in
the same bin. Alternatively if we had the starting
case where 50% of points were twice as close together
as the rest, the initial histogram of distances would
consist of two bins of equal sizes. Under uniform
expansion, the position of the bins would change in
a consistent way, but their proportions would not be
altered.

Now consider the case of non-uniform, or dif-
ferential expansion. This means that some points
expand faster then others, i.e. expansion introduces
a variance in to the distance between points. Impor-
tantly this variance increases as expansion increases,
such that points that expand the fastest will increase
the distance between them at a greater rate than
points that expand the slowest. For the histogram
this means that at the upper-end of the length-scale,
there will be fewer and fewer points covering these
longer distances. Hence even if we start with a uni-
form distribution of points, under differential expan-
sion, the histogram of distances between points will
become ever-more skewed to shorter distances.

We note that these are general principles of differ-
ential expansion. Although we have considered here
the straightforward case of expansion of points on a
line, the principle may be equally applied to points
on a surface. In the next section we consider how
differential expansion impacts on cortical morphol-
ogy with the aim of showing how measures of mor-
phology have implications for underlying connection
length distributions.

Differential expansion of a surface may give rise
to intrinsic curvature. Intrinsic curvature may be
visualized thus: as the surface grows, its tangential
expansion may develop in three ways: if a surface
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Fig. 1. Differential growth produces either positive or
negative curvature.

patch grows at a uniform rate, the resultant sur-
face will be flat; if the patch has a differential
growth component such that its edges develop more
slowly than the center, then the resultant surface
will be spherical (either concave or convex), other-
wise referred to as positively curved; if the edges
develop faster than the center, the resultant surface
will be saddle-shaped, otherwise referred to as nega-
tively curved!?13 (see Fig. 1). The more extreme the
differential growth gradient, the greater the resultant
intrinsic curvature.

Intrinsic curvature is, as its name suggests, an
intrinsic property of the surface itself and cannot be
removed from it without tearing or deforming the
surface — (think of trying to flatten a football, the
intrinsic curvature of its surface means that it can-
not be mapped to a surface with a different intrinsic
curvature, e.g. a flat plane which has no intrinsic
curvature). The cerebral cortex is both intrinsically
and extrinsically curved.!* Extrinsic curvature (or
mean curvature), is curvature that arises from the
mechanical folding of the surface, and as such is not
a property of the surface itself, but rather of how it
is embedded in three-dimensional space. For exam-
ple, a crumpled piece of paper has many curves in
it, but these curves can be removed to restore the
paper to its original flat appearance. Thus we can say
that the folded paper has extrinsic, but not intrinsic
curvature.

The degree of intrinsic curvature is proportional
to the degree of differential expansion; bigger dif-
ferences in expansion across the surface give rise
to greater degrees of intrinsic curvature. Differ-
ential expansion, if present, increases as expan-
sion increases, i.e. as the magnitude surface area
increases. This is analogous to changes in corti-
cal gyrification, which also increase as surface area
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increases. Importantly, differential (non-uniform)
rates of surface expansion, as we have noted above,
may give rise to uneven distributions of neurons and
an increase in the proportion of short connections.
Since it also gives rise to intrinsic curvature, it follows
that measures of intrinsic curvature contain informa-
tion about length distributions of tangential cortical
connections. This is the essence of our hypothesis.

Although a mathematical concept,'? the connec-
tion between differential development and intrin-
sic curvature has previously been established in
biological studies. It has been demonstrated that
the differential growth of leaves produces intrinsic
curvature,'® while a similar effect was noted in plant
roots.'® However, measurements of cortical intrin-
sic curvature have not commonly been assessed in
structural studies of the brain. This is likely due, in
no small part to its subtle nature compared to the
rather more striking, and easily measurable, patterns
of gyrification and cortical thickness.

One of the first studies to investigate corti-
cal intrinsic curvature was based on a cortical
reconstruction of the Talairach atlas, and implic-
itly confirmed the prevalence of intrinsic curvature
by demonstrating that the mean geodesic (smallest
path length between two points on a surface, a func-
tion of intrinsic curvature) was less than its total
surface area would predict.? Other studies explicitly
measured the intrinsic curvature of the cortex at a
millimeter-scale and showed that it has both negative
and positive curvature.'® More recently, the intrin-
sic curvature of the cortical surface, again measured
at a millimeter-scale, was explicitly rendered,'” and
a qualitative examination of the surface revealed it
to be predominantly negatively curved. The aver-
age magnitude of intrinsic curvature measure at this
scale is about 0.06 mm—2.'8

Thus far we have discussed the implication of
differential expansion on connectivity and morphol-
ogy separately. In order to explore the possibility of
this link empirically, we contrasted cortical intrin-
sic curvature between humans and chimpanzees.
We hypothesized that if morphology and connec-
tivity are linked then there should be quantifi-
able differences in intrinsic curvature between the
species, over and above those attributable to dif-
ferences in surface area, and that these differ-
ences should conform to theoretical expectations
of connectivity differences between the species.
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We chose humans and chimpanzees as a con-
trast based on the strong theoretical arguments and
empirical evidence of connectivity differences. Large
brains are not simply scaled-up versions of small
brains.'® Rather, theoretical considerations predict
that increasing brain size results in proportion-
ately fewer long-range connections.?’ As discussed
in Ref. 21, if a fixed percentage of connectivity was
maintained, then the volume of connections would
increase exponentially as brain size increased. With-
out a trend towards increasing modularity, the over-
all increase in distance of all connection lengths in
larger brains would result in a conduction delay,
which is inefficient.'™2? Empirical studies have sup-
ported this and demonstrated, for example, that
inter-hemispheric connectivity via the corpus callo-
sum is reduced in larger primate brains, while the
intra-hemispheric connectivity is augmented.??2* In
a similar manner but at a smaller scale, the propor-
tional extent of horizontal cortical connections in the
primary visual cortex, V1, is decreased in macaque
monkeys (V1 of 1200 mm?, Ref. 25) compared to tree
shrews (V1 120mm?, Ref. 26).

In terms of cortical architecture, humans have
a lower neuronal density and increased horizontal
spacing between minicolumns than chimpanzees and
other primates.?”-?® This implies that, on average,
in accord with the theory outlined above, there
should be a greater uneven spatial distribution in the
lower density cortex (humans), and hence (as argued
above) more skew towards shorter connections. Thus,
although the absolute connection lengths in chim-
panzees may be shorter, they will have proportion-
ately more “long” connections. The reduced neuronal
density in humans will also impact on differential
growth which arises from forces internal to the sur-
face itself. Hence differences in cortical architecture
between humans and chimpanzees will also manifest
as differences in differential growth, with the lower
density cortex experiencing greater degrees of differ-
ential growth.

We have thus far discussed two factors which
we propose impact on the degree of differential
growth, namely magnitude surface area, and cortical
architecture. In a comparison between humans and
chimpanzees we expect that humans will have rel-
atively more differential growth due to their larger
surface areas, as well as reduced neuronal density.
After correction for surface area, differences in the

distribution of intrinsic curvature values (taken as a
proxy for differential growth) should solely reflect dif-
ferences in underlying architecture. We believe these
changes may ultimately be related to cortico-cortical
connectivity.

In summary, although the relationships between
intrinsic curvature and differential development, and
between differential development and cortical con-
nection lengths have been independently explored,
we believe that these hitherto separate strands may
usefully be brought together. We postulate that
differential development simultaneously affects the
relative lengths of cortico-cortical connections, and
the degree of intrinsic curvature and, thus, intrin-
sic curvature, which is quantifiable, may serve as
a useful marker for tangential cortical connectiv-
ity distributions. If the degree of intrinsic curvature
reflects differential development and is related to cor-
tical connectivity, then humans should have higher
degrees of intrinsic curvature over and above the
magnitude of cortical surface area.

2. Methods
2.1. Subjects € MR acquisition
parameters

We  obtained three-dimensional T1-weighted
MPRAGE magnetic resonance (MR) images for ten
chimpanzees and ten humans using a Siemens 3
Tesla (T) Trio MR system. Chimpanzee images
were acquired at Yerkes National Primate Research
Centre (YNPRC) in Atlanta, Georgia, US. Human
images were acquired at the Magnetic Resonance
and Image Analysis Research Centre (MARIARC) at
the University of Liverpool, UK. The MR sequences
used for acquisition of images are shown in Table 1.
Acquisition parameters were made to be as simi-
lar as possible for humans and chimpanzees. The
field of view was naturally larger in humans owing
to greater head size. Furthermore, we were unable
to replicate the 0.6 mm voxel resolution in the slice
thickness direction in humans that was used for
the chimpanzees due to the presence of multiple
artefacts. Reducing the voxel resolution to 1.0 mm
in this direction in humans resulted in an acqui-
sition time of 12 minutes, which contrasted to
the 36 minute chimpanzee scan. However, the in-
plane voxel resolution was 0.6 mm x 0.6 mm for both
humans and chimpanzees, resulting in a very similar
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Table 1. MRI acquisition information for study images.

Human

Chimpanzee
n 10
Male/Female 4/6
Hardware 3T, Siemens trio, CP head coil
Sequence MPRAGE T1-weighted
TR 2300 ms
TE 4.4 ms
TI 1100 ms
Flip angle 8
NEX 3
FOV 200 mm x 200 mm

In-plane resolution

Slice thickness 0.6 mm
Data matrix size 320 x 320
Slices 192

Time 36 minutes

0.625 mm x 0.625 mm

10

6/4

3T, Siemens trio, CP head coil
MPRAGE T1-weighted
2300 ms

4.4 ms

1100 ms

8

1

200 mm x 200 mm
0.625 mm x 0.625 mm

1 mm

320 x 320

192

12 minutes

between-tissue contrast. All humans provided writ-
ten consent to participate in this study, which had
local ethics committee approval. For the chimpanzee
scans, subjects were first immobilized by ketamine
injection (10mg/kg) and subsequently anaesthetized
with propofol (40-60mg/kg/h) following standard
procedures at the YNPRC. Subjects were then trans-
ported to the MRI facility and remained anaes-
thetized for the duration of the scans as well as the
time needed to transport them between their home
cage and the imaging facility (total time ~2h). Sub-
jects were placed in the scanner chamber in a supine
position with their head fitted inside the human-head
coil.

2.2. FreeSurfer cortical reconstruction

Cortical reconstructions were generated using
the software FreeSurfer (http://surfer.nmr.mgh.
harvard.edu/, see Refs. 29-32). The FreeSurfer
program was specifically developed for cortical recon-
struction. In brief, raw image data voxels are sub-
sampled to voxels of side 1mm?®. After that the
data are normalized for intensity, RF-bias field inho-
mogenities are modeled and removed, followed by
skull-stripping. The cerebral white matter is iden-
tified based on a linear combination of voxel inten-
sities and local geometric information. After white
matter segmentation, the hemispheres are separated
from each other and non-cerebral structures. Finally
the white matter volume is tessellated and deformed

to produce an accurate and smooth representation
of the grey-white interface. Because the radius of
curvature and the thickness of the cortex are greater
than the size of the MR voxels, trilinear interpolation
of the surface is not limited by the voxel dimensions
of the original data, and hence surfaces may be com-
puted at a sub-voxel scale.?!

Although the FreeSurfer process is specifically
designed for the processing of human data, nonethe-
less it has previously been used to reconstruct cor-
tical surfaces of non-human primates.® However,
in order to ensure accurate surface reconstructions,
special attention is required to apply the process
to non-human primates. FreeSurfer is optimized to
work on voxels conformed to 1mm?, in a data
matrix 256 x 256 x 256. As such the processing of
high-resolution data, such as that acquired for this
study can be problematic. In order to circumvent
such problems, and ensure the most time-efficient
and accurate surface reconstructions, the data for
humans and chimpanzees were conformed to the
expected FreeSurfer dimensions.

Because data were acquired at slightly differ-
ent resolutions and on different MR scan systems,
stringent quality control was applied to ensure the
accuracy of the surface reconstruction for each indi-
vidual. Every slice through each volume was visually
inspected to check the accuracy of both the pial and
white matter surfaces. Inaccuracies in segmentation
and reconstruction were manually corrected, and sur-
faces recomputed.
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2.3. Measuring curvature

In talking about curvature, it is important to be
specific as to what is meant. For example, in the
commonly held understanding of curvature, we may
say that the surface of a sphere and a cylinder are
both curved surfaces, however investigating further
we can make distinctions between these two surfaces
which demonstrate that the nature of their curvature
is quite different.

Consider how curvature is measured: curvature is
defined at every point on a line or surface. At each
point on a line, the curvature is measured as the
inverse of the radius of the osculating circle (¢ = 1/r)
(see Fig. 2). Thus if we were to slice through both a
sphere and a cylinder to create a line-profile of the
shape, we would in each case measure a non-zero cur-
vature. Now consider measuring curvature of a sur-
face: at every point on the surface there is an infinite
number of directions through which we can measure
the curvature. Gauss showed that, despite this, there
are always two directions which produce a maximum
and a minimum value of curvature, and these direc-
tions are always orthogonal to each other (called the
principals of curvature (¢q, ¢2)). Gauss thus described
the curvature at a point on a surface as the product
of the principal curvature measured in each of these
directions (K = ¢1 X ¢3). This type of curvature is
called intrinsic or Gaussian curvature, and is a func-
tion of the surface itself.

If we return to our cylinder and sphere, we can
now begin to differentiate between the curvatures of
each of these surfaces. For example, in the case of the
cylinder, it is easy to appreciate that the maximum
curvature is perpendicular to the axis of the cylinder,
while the minimum curvature is parallel to it. In the
case of the latter, the radius of curvature is infinite,
given that the axis is a straight line. This means that
at every point on the cylinder surface, the intrinsic
curvature is zero, implying that it is homomorphic
with a flat plane. We can confirm this by consider-
ing the lack of distortion to the surface if we unfold
a cylinder to lie flat on a plane surface. In contrast,
for each direction on a spherical surface, there is a
non-zero value to each of the radii of curvature (actu-
ally they are identical). This means that the surface
cannot be flattened without distortion.

The distinction between folding-based curvature
(mean curvature), and intrinsic surface-curvature is

subtle and it is not always possible to appreciate
visually, especially when the two co-exist in the same
surface, as is the case with the cerebral cortex, how-
ever some work has been done to contrast these two
parameters in the visual cortex.3* To illustrate the
difference between folding and intrinsic curvature,
the mean curvature, H, which is a measure of fold-
ing, and the intrinsic curvature are mapped on to
a cortical reconstruction in Fig. 2. Mean curvature
is calculated as the average of the principal cur-
vatures (formally it is defined as the trace of the
Hessian matrix, while intrinsic curvature is the deter-
minant). Thus depending on how they are combined,
the principal curvatures can illustrate the folding of
the cortex (gyri and sulci, as convex or concave folds
respectively), or the intrinsic curvature of the cortex
(both positive and negative intrinsic curvature).

Mathematically, curvature is measured at each
point on a surface. In the FreeSurfer process, this
is approximated through intrinsic curvature mea-
sures at each vertex of the surface reconstruction
using the principles of the Gauss-Bonnet scheme
(see Fig. 2(d)): On a flat surface, the interior angles
of a triangle sum to 180°. However, as discovered
by Riemann, on a curved surface this does not hold,
and the sum of the interior angles are greater or less
than 180° for positive or negative curvature respec-
tively, the surfeit or deficit depending on the degree
of intrinsic curvature. These relationships are the
basis for intrinsic curvature calculations on the cor-
tical surface: if the area of a vertex (defined as the
area of triangles which define the vertex) is convex
or concave (as is the case for a positively curved sur-
face), then the surrounding angle is less than 360°.
If the area is flat, then the angle is £360°, whereas
if the area is saddle-shaped (negatively curved), the
angle is greater than 360°. The intrinsic curvature
of the vertex is calculated as the surfeit or deficit of
the vertex angle divided by one third the sum of the
vertex areas (Eq. (1)).3°

om — 3. 6
K: 7; Zlel
§Zi‘4i

where 0; is the angle subtended by ith vertex, and A;
is the area of ith vertex (the sum of areas of triangle
surrounding the vertex). (Further details of curva-
ture calculations per vertex are outlined in Ref. 17.)
The Gauss-Bonnet scheme has been demonstrated

(1)
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Mean Curvature
H=(c,+c)/2

Gaussian Curvature
K= c,X ¢,

Mean Curvature Gaussian Curvature

Fig. 2. (a) The curvature, ¢, at a point on a line is given as the inverse of the radius of the osculating circle at that point.
(b) For a surface, the curvature at a point is the function of the principal curvatures at that point, where the principal
curvatures are always orthogonal to each other. The mean curvature, a function of how the surface is embedded in space,
is the average of the principal curvatures, while the Gaussian curvature, which is intrinsic to the surface, is calculated as
the product of the principal curvatures. (¢) The principal curvatures for each point on a cortical surface reconstruction
may be combined to generate a map of mean curvature or Gaussian curvature. The mean curvature clearly follows the
familiar morphology of the cortex, with convex regions (gyri) in green, and concave regions (sulci) in red. The pattern of
Gaussian curvature is of a much higher spatial frequency and does not follow the larger-scale morphological features of
cortical folds. For Gaussian curvature, positive curvature is red and negative curvature is green. These images demonstrate
how folding is distinct from intrinsic curvature. (d) For a surface reconstruction the Gaussian curvature is calculated per
vertex based on the Gauss-Bonnet scheme (see Eq. (1)).
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to be optimal for measurements of Gaussian cur-
vature based on surface tessellations in comparison
with other commonly applied methods.?® Intrinsic
curvature values were measured on the pial surface
for each subject.

2.4. Reliability of curvature measures

2.4.1. Filtering

Despite stringent quality control measures to ensure
accurate surface reconstructions, surfaces may yet
be hampered by single voxel errors. As discussed
previously,!” the limiting scale at which curvature
may be reliably calculated is defined by an osculating

sphere with radius one-half the diagonal of the voxel.
In the FreeSurfer process all data are sub-sampled
to a unit side of 1 mm, giving a limit of resolution
of \/2/2mm, equivalent to a radius of curvature of
1.41mm~! (see Fig. 3). Although surfaces are recon-
structed at a sub-voxel scale (being continuous), this
value represents the threshold of curvature beyond
which values are not reliable.

In order to filter out unreliable curvature val-
ues, the intrinsic and mean curvature values for
each vertex are calculated using the Gauss-Bonnet
method described above. From there the principle
curvature values are derived. At this point the limit-
ing threshold is applied to both principal curvatures

FILTERING CURVATURE

Single vertex errors are regions of high curvature.

In order to exclude these errors, a low pass filter

is applied to each of the principal curvatures per
vertex of the surface reconstruction. The filtered
principal curvatures are then re-multiplied to generate
accurate values of Gaussian curvature.

Decimation at 90%

12 triangles
11 vertices

E Iz,
Cubic Voxel Osculating Circle  Radius of osculating circle = ;ﬁ
of side 1Tmm for single voxel
Curvature = @2 mni ! - - =
____________________________________ Decimation at 50%
(c) ,
9 triangles
For successive curvature filter levels, the 9 vertices
skew is calculated based on less of the -1 9 1 A
1.41mm 1mm 0.5mm 0.2mm

distribution.

Example of the negative curvature
distribution of one of the principle
curvatures

A
B

Fig. 3. (a) Single vertex errors sometimes occur in surface reconstructions despite manual editing. These result in vertices
of very high curvature. In order to remove these, Gaussian curvature values per vertex are resolved into their constituent
principal curvatures and a low-pass filter applied. Subsequently the filtered principal curvatures are re-multiplied to
produce a filtered Gaussian curvature per vertex of the surface reconstruction. (b) Different levels of filtering are applied.
At the lowest level, the low-pass filter value is defined by the limiting scale at which curvature may be reliably calculated.
In FreeSurfer, this is defined by the inverse of the radius of an osculating sphere half the diameter of the voxel. (c) Because
the cerebral cortex is smooth, less highly curved shapes are more likely to reflect the shape of the cortex, thus different
filter levels are applied to the curvature distribution. (d) An example of the impact of surface decimation at the 90% and
50% level. As the surface is down-sampled, the number of vertices and triangles are decreased.



from which the intrinsic curvature value is subse-
quently derived. Principal curvature values that are
more extreme than the filter threshold are set to
zero. Thereafter the filtered principal curvatures for
each vertex are multiplied to produce filtered intrin-
sic curvature values for each vertex in the cortical
reconstruction, and hence a filtered distribution of
intrinsic curvature values for each subject.

The filter level |1.41mm™!| represents the lim-
iting resolution by which we can rely on principal
curvature measures, however this resolution does not
preclude the possibility that data may be affected by
surface reconstruction errors which are greater than
the dimensions of a single voxel and yet not removed
by manual editing. Because of this, several different
filter levels are applied to principal curvature calcu-
lations, such that principal curvature values become
less extreme and hence are more likely to follow the
smooth surface of the cortex.

Four different filter levels were applied to
each principal curvature calculation, i.e. ¢, co:|1.41
-1, Y and [0.2mm™!]. At
each stage, vertices with principal curvature values
exceeding these levels were set to zero and hence the
intrinsic curvature value for that vertex was excluded
from further distribution analysis (see Fig. 3). Per
vertex, principal curvature values that survive each
level of filtering are multiplied together to produce a
filtered Gaussian curvature for that vertex.

Because chimpanzees have smaller brains and

mm {1 mm |0.5 mm™—

hence higher average curvature values (irrespective
of subtle shape differences), the same low-pass fil-
ter level applied to unconformed human and chim-
panzee data sets will remove a higher proportion of
the chimpanzee curvature distribution. To compen-
sate for this, we applied the same filter levels to con-
formed data (see Sec. 2.2). This had the effect of
producing equivalent percentages of curvature dis-
tributions for each filter level in a comparison across
the species.

2.4.2.  Surface decimation

Vertex-based measures of intrinsic curvature may
be susceptible to artifacts due to local surface
quantization effects such as varying the number
of vertex neighbors. As an additional test of the
reliability of FreeSurfer cortical curvature values,
we applied an algorithm which decimated the
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cortical reconstruction.®® Decimation has the effect
of down-sampling the number of vertices in the
surface reconstruction, while maintaining as far as
possible fidelity to the original shape of the corti-
cal surface. In this experiment we decimated the
reconstructions per subject to 90%, 75% and 50%
of the original number of vertices. This had the
effect of increasing the size of surface triangles, as
well as varying the number of neighbors per vertex
(see Fig. 3). Curvature analysis was carried out as
described above for each of these levels.

2.5. Data analysis

As discussed previously, we postulate that differen-
tial growth introduces an additional component to
the overall forces determining length. Our theory
predicts that humans will have proportionately more
short-range connectivity than chimpanzees, hence we
predict that the distribution of human curvature val-
ues will be skewed towards more extreme curvature
values reflecting more short-range connectivity due
to this differential surface growth component.

Because we are interested in the shape of the cur-
vature distribution rather than its average value, we
quantified the skew of the curvature distribution per
subject, and averaged this over species. Skew, S, is
defined as follows (Eq. 2)

where n is the number of intrinsic curvature values
(equal to the number of vertices in the surface recon-
struction), and z; is the value of Gaussian curva-
ture for the ith vertex. The skew of a distribution
is a dimensionless measure of how far from symme-
try it is. As reported in Ref. 17, the distributions of
positive and negative cortical intrinsic curvature are
weighted towards zero. Zero curvature represents an
absence of differential growth (a flat surface). As the
component of differential growth increase, it affects
the curvature distribution, skewing it away from
zero. In accordance with our theory, we propose that
this reflects an increase in the proportion of short
connections. Thus the less skewed the curvature dis-
tribution (the more it is weighted away from zero
curvature), the greater the influence of differential
growth and the greater the proportion of short-range
connections.
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3. Results
3.1. Awerage values

The average cerebral volume for humans and chim-
panzees derived from cortical reconstructions was
723 cm? (£76) and 421 cm? (+37) respectively. These
results are in good experimental agreement with sim-
ilar studies.?” The average surface area per hemi-
sphere for humans and chimpanzees was 681 cm?
(£64), and 314 cm? (£24) respectively.

For humans the average intrinsic curvature
values for negative and positive curvature were
—0.038mm~2 and  0.033mm™?2
For chimpanzees, the average curvature was
—0.018 mm~2 and 0.016 mm™~2 respectively,

Finally, the average percentage of vertices with
negative curvature was 55% (£0.4) and 56% (£1.7)
for humans and chimpanzees respectively. The cor-
responding percentage area for negative curvature
was 60% (£3) for both humans and chimpanzees,
demonstrating that the pial surface is predominantly
negatively curved for both species. This result is in
keeping with previous reported findings.?'”

respectively.

3.2. Cortical intrinsic curvature
distributions

The spatial distributions of cortical curvature for
chimpanzees and humans at the |1.41mm™1!| filter

mm Positive Curvature

m Negative Curvature

Human

are illustrated in Fig. 4. Empirically, the distribu-
tions for both positive and negative intrinsic curva-
ture are weighted towards zero, and are similar to
those previously published.!6:17

Skew analysis of the curvature distributions for
humans and chimpanzees (corrected for surface area)
revealed significant differences between the species
(Fig. 5). For positive and negative curvature, humans
are significantly less skewed (less weighted towards
zero) than chimpanzees. This finding is robust across
all filter levels (Table 2).

This result is in agreement with our hypothesis
stated at the outset, that humans have a greater
degree of intrinsic curvature (taken as a proxy for dif-
ferential growth) than chimpanzees, over and above
surface area differences. It is our hypothesis that this
result reflects a change in the proportion of short over
long connections between the species.

3.3. Reliability of measures

The effects of different curvature filter levels are
reported in Table 2. For each filter level, the
percentage of vertices contributing to intrinsic cur-
vature measures were 81%, 74%, 50% and 12%

~1, 10.5mm~!| and

for filters [1.41mm~1!|, |1 mm
|0.2mm™?| respectively. There were no significant
differences between the species for any of the filter

levels, except at the |0.2mm™?| level, which may be

Chimpanzee

Fig. 4. Gaussian curvature for humans and chimpanzees for the pial surface. In each case, the high spatial frequency

pattern of the Gaussian curvature is evident.
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Distributions of positive and negative cortical intrinsic curvature for humans (blue) and chimpanzees (green)

based on the cortical surface. In each case the magnitude of skew of the curvature distribution is less in humans.

Table 2. Average values of the skew of the intrinsic cur-
vature distributions (both positive and negative), broken
down by species and curvature filter level. In agree-
ment with theoretical predictions, for both positive and
negative curvature, chimpanzees are more skewed than
humans. This pattern is consistent across all filter levels.

Humans Chimpanzees p-value

Negative  |1.41 mm)| —4.8 —5.6 0.04
Curvature |1 mm)| -3.8 —4.8 0.02
Skew |0.5 mm)| —2.6 -3.3 <0.01
|0.2 mm]| -1.9 —2.3 0.03

Positive [1.41mm | 3.6 4.2 0.05
Curvature |lmm | 3.2 3.6 0.01
Skew |0.5 mm]| 2.7 3 <0.01
0.2 mm| 2.7 3.2 <0.01

due to the differences in skew of the distributions.
For all filter levels, humans are both less positively
and less negatively skewed in comparison to chim-
panzees, in keeping with theoretical predictions.
The effects of surface decimation are reported

in Table 3. Three different levels of surface

Table 3. Results of curvature skew analysis for different
decimation levels.
Decimation

(%) Humans Chimpanzees p-value
Negative 90 7.2 —7.6 0.07
Curvature 75 —6.9 -7.5 0.01
Skew 50 —6.2 —6.8 <0.01
Positive 90 7.5 7.6 0.44
Curvature 75 7.1 7.5 0.01
Skew 50 6 6.6 <0.01

decimation were applied. The average vertex
area was 0.98mm~2, 1.04mm~2, 1.16mm~2, and
1.45mm~2 for the original, and 90%, 75% and 50%
decimations levels respectively. For each decimation
level, humans have less curvature skew compared to
chimpanzees, in keeping with expectations. These
results demonstrate the robustness of curvature val-
ues to artifacts of surface reconstruction.

4. Discussion

4.1. Overview

This experiment examines the prediction that the
human brain should show a greater degree of intrinsic
curvature than that of the chimpanzee independent
of surface area. This prediction is based on the pro-
posed relationship between intrinsic curvature and
tangential cortical connection length distributions, a
link based on the premise that differential surface
expansion has an impact on each.

The approach described unites two separate
observations: on the one hand differential rates of
tangential surface development introduce intrinsic
curvature, with greater rates of differential expan-
sion resulting in higher degrees of curvature. Com-
mensurate with this, differential expansion results in
greater disparity of inter-neuronal distances, skew-
ing the length distribution to favor proportionately
more short-range cortico-cortical connections. Thus,
because differential development affects both the dis-
tribution of curvature values and the distribution of
tangential connection lengths, we suggest that it is
possible to adopt measures of the former as markers
of the latter.
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More specifically, in the absence of differential
development, there will be a certain distribution of
connection lengths. As the influence of differential
development increases, the original length distribu-
tion will be skewed to proportionately more short
connections. Here, we compare this imposed skew
across species, and make inferences about the relative
proportions of short-to-long connections. We high-
light that, just as in conventional network analysis,
the current method does not quantify absolute con-
nection lengths, but rather the relative difference in
the proportions of short connection lengths between
humans and chimpanzees. The a priori prediction
was that the two species would have distinct connec-
tion length distributions, over and above the dispar-
ity of magnitude in surface area. We propose that
this reflects a difference in cortical architecture, with
the larger brains of humans characterized by a more
uneven spatial distribution and hence a preponder-
ance of short connections, as well as increased intrin-
sic curvature. The results of our analysis demonstrate
agreement with this prediction.

The interpretation of intrinsic curvature, and its
impact on the cortical surface is dependent on the
scale at which it is measured. For example, at a gross
scale, the shape of the whole brain is quasi-spherical,
suggesting a large-scale positive intrinsic curvature,
complementing the shape of the cranium. At lower
scales, such as the centimeter-scale employed in
Ref. 2, or the millimeter-scale in Ref. 17, the major-
ity of the cortex appears to be negatively curved.
We propose that measures of cortical intrinsic cur-
vature at a millimeter-scale may be related to the
differential tangential development of cortical con-
nections at that scale. Crucially, when we refer to
cortico-cortical connections we mean intrinsic (hori-
zontal) axonal processes that are confined to the cor-
tical grey matter, which can extend up to several
millimeters.?® We do not mean extrinsic (white mat-
ter) connections such as U-fibers, or intra and inter
hemispheric connections. In other words, the connec-
tivity we refer to is at a mesoscopic scale of a few
millimeters and is tangential to the cortical surface.

4.2. Reliability

It is mnoteworthy that two of the observa-
tions made here pertaining to intrinsic curvature
are compatible with those made in previous

studies: the high-frequency pattern of intrinsic
16,17 and the predominance of negative
intrinsic curvature.?!7 Further, the values of intrin-

curvature,

sic curvature we report are comparable to previous
findings.!®

One of the limitations of this study is the fact
that data were not acquired on the same scan-
ner, however every attempt was made to match as
closely as possible the scanning parameters between
centers. In addition intensive quality control was
applied to the surface reconstructions for each sub-
ject. Where errors in reconstruction were noted (e.g.
due to poor contrast between tissue classes), manual
edits were carried out. Because inaccuracies are cor-
rected based on two-dimensional slices, and not the
three-dimensional surface representation, this type of
intervention is not biased with respect to the mea-
surement of intrinsic curvature (which is not mea-
surable on two-dimensional line profiles, see Sec. 2.3,
Measuring Curvature). By inspecting the cortical
reconstruction of each subject, we aimed to reduce,
as far as possible, discrepancies in accuracy that may
have arisen from differences in data acquisition. As
a further control, we applied a series of curvature fil-
ters to remove values arising from single vertex errors
that were not correctable with manual edits. Finally
we tested the reliability of curvature values by apply-
ing a series of surface decimation levels to the cortical
mesh of each subject to ensure that curvature val-
ues were representative of cortical morphology and
not surface quantization effects. The results of our
validity experiments demonstrate the reliability of
our data and the robustness of the methods used.

4.3. Theoretical considerations

Theoretically intrinsic curvature is very interesting
and the distinction between negative and positive
intrinsic curvature is potentially useful. The possible
advantages of negative and positive curvature were
originally contrasted in Ref. 2. At the heart of the
discussion is the distinct effects each shape has on
angles and lengths along the surface. In the case of
spherical or positive intrinsic curvature, angles and
distances are increased relative to Euclidean geome-
try, whereas for negative intrinsic curvature, angles
and distances on the surface are reduced compared
to Euclidean geometry. For example, consider a fixed
point, P, attached to which is a length of rope, r.



If one were to walk around the fixed point, while
keeping the rope completely taut, the distance tra-
versed would be 27r if the surface were flat. Now
consider if the surface were spherical, the circumfer-
ence traversed would be less than that measured on
the flat surface, as the rope, although taut, would
now be effectively “shortened” in reach due to the
intrinsic curvature of the surface. Conversely, if the
surface were hyperbolic in shape, as if the point P
were on a valley floor, the measured circumference
would be greater than 27r as the rise and fall of
the surface topology would act to lengthen the dis-
tance required for a revolution. Thus, in order to
produce an equivalent circumference to that mea-
sured on the flat plane, the size of the spherical area
would have to be increased, whereas the size of the
hyperbolic area would have to be decreased. From
this reasoning we can postulate that the predomi-
nantly negative nature of cortical intrinsic curvature
may introduce an increased level of efficiency to the
cortical surface, in that, for a given circumference of
a patch of cerebral cortex, a smaller area is covered
than would be the case for a flat or spherical patch.
This means that there is a greater circumference for
a given radius compared to a positively curved patch
or a circle on a flat surface. The impact of this was
discussed in Ref. 2, where it was suggested that this
may imply that a negatively curved cortical patch
could facilitate more inter-regional (tangential) con-
nectivity and hence be superior for inter-area wiring.
Additionally it was suggested that because the aver-
age geodesic on a negatively curved surface is less
than on a positively curved or flat surface, it may be
more efficient for intra-area wiring also. Given these
considerations, the preponderance of negative versus
positive intrinsic curvature of the cortical surface at
a millimeter-scale may be considered commensurate
with the idea that the brain has adapted its shape
to be maximally energy efficient.?” It is estimated
that approximately 50% of the brain’s energy is used
to drive signals,* with higher proportions of energy
required for cortical grey matter (75%) compared to
the rest of the brain reflecting the formers greater
levels of inter-connectivity. Thus it may be that the
brain has evolved a shape that minimizes the energy
cost of signal transfer across its surface.

At larger scales, measurements of intrinsic cur-
vature may prove to be very informative regarding
the organization and appearance of the cortex. Just

Intrinsic Curvature as a Marker of Cortical Connectivity 363

as the smoothness of a piece of paper is dependent
on the scale at which it is measured, so too is the
intrinsic curvature of cortex. That is, the spatial fre-
quency and values of this intrinsic curvature vary
over different scales. For example, at the millimeter-
scale, the cortex has a demonstrably high spatial fre-
quency, independent of the larger-scale patterns of
gyri and sulci, whereas at the centimeter-scale it has
a lower frequency that follows more closely cortical
gyrification features.? Similarly the values of intrin-
sic curvature measured are dependent on the scale at
which they are measured. For example, in this exper-
iment the average intrinsic curvature values of the
pial surface for humans (with minimal filtering) were
—0.038mm~2 and 0.033mm™2, however at higher
sales, we would expect to measure proportionately
less sharp intrinsic curvature values. Because intrin-
sic curvature values are dependent on not only the
shape but also the size of the object being measured,
it is important, as we have done here, to use dimen-
sionless parameters such as skew when comparing
brains of different sizes (For a more complete discus-
sion see Ref. 17).

4.4. Future work

The hypothesis proposed here raises several testable
predictions, namely that smaller brains will have less
intrinsic curvature than larger brains, and that cor-
tices with higher neuronal density will have less dif-
ferential growth and hence less intrinsic curvature.
This may prove useful in clinical studies where higher
neuronal density and decreased neuropil have been
linked to diseases such as schizophrenia.*"*? Further
empirical observations of the extent of horizontal
connectivity between species, or indeed in different
regions of the brain, would be useful to correlate with
our predictions for the morphology of the cortex. For
example perceptual effects such as the simultaneous
tilt illusion,*® hypothesized to be a function of hor-
izontal connectivity, should provide an alternative
method for generating strong, directional predictions
for cortical curvature.

The method proposed here, while suitable for
whole brain characterization, may also be adapted
to a region-of-interest approach. In particular this
may be of interest in studies of disrupted connec-
tivity, which is thought to play a role in diseases
such as epilepsy,** or possibly in neurodevelopmental



364 L. Ronan et al.

disorders, where deviant brain growth trajectories
have been linked to abnormalities in cortico-cortical
connectivity.*?

The high spatial frequency pattern of intrinsic
curvature is different from that predicted by current
theories of gyrification,*® which suggest that axonal
tension mediates cortical folding, and that differen-
tial growth between layers is a consequence, rather
than a driver of sulcal/gyral formation. Under this
hypothesis, intrinsic curvature should follow a spatial
pattern equivalent to the pattern of sulci and gyri,
which is not the case. Differential growth between
cortical layers, and between the cortex and subcor-
tical white matter has previously been considered
as a main component of cortical gyrification,*” and
further work to explicitly compare extrinsic folding
and intrinsic curvature might help resolve the role
each plays in gyrification. In particular, analysis of
intrinsic curvature at a scale on the order of cortical
folds may prove especially useful, given that intrinsic
properties of a surface actually constrain the possibly
extrinsic properties.?

To date connectivity studies using EEG/fMRI/
MRI-based network analysis have focused on large-
scale, inter-regional (white matter-based) connectiv-
ity. However, by measuring intrinsic curvature at the
smaller, millimeter-scale, we are able to make infer-
ences about connection length distributions at this
scale. We believe that the current approach may offer
a novel analysis that is potentially complementary
analysis to larger-scale network studies.

5. Conclusions

To summarize, in this study we draw a theoretical
link between two prior observations: that differential
development of the cortical sheet will have an impact
on the lengths of tangential cortical connections, and
that this differential development will simultaneously
affect local cortical morphology and result in intrin-
sic curvature. We hypothesized that if cortical intrin-
sic curvature and the length of tangential cortical
connections were in fact related, then measures of
the former should be able to distinguish between
species in a predictable way, based on the theory that
larger brains have proportionately more short con-
nections. We demonstrate that, in keeping with pre-
dictions, the human brain in comparison to that of
the chimpanzee shows a pattern of intrinsic curvature

that is commensurate with a greater preponderance
of short-range connections. We believe that this
novel approach for the characterization, in wvivo,
of connectivity in the cortical sheet will be com-
plementary to studies evaluating longer range con-
nections, and may prove useful in identifying and
understanding functional abnormalities in patient
groups.
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