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Abstract. In this paper, we propose a unified framework for computing
atlases from manually labeled data at various degrees of “sharpness” and
the joint registration-segmentation of a new brain with these atlases. In
non-rigid registration, the tradeoff between warp regularization and im-
age fidelity is typically set empirically. In segmentation, this leads to a
probabilistic atlas of arbitrary “sharpness”: weak regularization results
in well-aligned training images and a “sharp” atlas; strong regularization
yields a “blurry” atlas. We study the effects of this tradeoff in the context
of cortical surface parcellation by comparing three special cases of our
framework, namely: progressive registration-segmentation of a new brain
to increasingly “sharp” atlases with increasingly flexible warps; secondly,
progressive registration to a single atlas with increasingly flexible warps;
and thirdly, registration to a single atlas with fixed constrained warps.
The optimal parcellation in all three cases corresponds to a unique bal-
ance of atlas “sharpness” and warp regularization that yield statistically
significant improvements over the previously demonstrated parcellation
results.
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1 Introduction

Automatic labeling of cortical brain surfaces is important for identifying regions
of interests for clinical, functional and structural studies [3, 14]. Recent efforts
have ranged from the identification of sulcal/gyral ridge lines [15, 17] to the
segmentation of sulcal/gyral basins [3, 5, 8, 9, 11, 13, 14]. Similar to these prior
studies, we are interested in parcellation of the entire cortical surface meshes,
where each vertex is assigned a label, given a training set of manually-labeled
cortical surfaces.

Probabilistic atlases are useful and prevalent in segmentation literature [3,
5, 12]. A typical initial step in atlas computation is the spatial normalization
of the training images. Measures like the prior probability of a certain label at
a location can then be computed. Spatial normalization can be achieved with
different registration algorithms that can vary in the rigidity of warps, from
affine [12] to fully nonrigid warps [5]. More restricted warps yield “blurrier”
atlases that capture inter-subject variability of structures, enlarging the basin of
attraction for the registration of a new subject. However, the trade-off between
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robustness and accuracy, which is limited by the “sharpness” of the atlas, is
typically ignored. Recent research [10] has shown that combining information
about the warp rigidity and the residual image of the registration process can
improve the classification accuracy of schizophrenic and normal subjects.

Finding the optimal warp regularization tradeoff has gathered attention in
recent years. Twining et al. [2] and Van Leemput [7] propose frameworks to find
the least complex models that explain the image intensity and segmentation la-
bels respectively in the training images. This is useful if the goal is to analyze the
training images. However, if the goal is new subject segmentation, then segmen-
tation accuracy should drive the choice of warp regularization. An interesting
question is whether outlier images require weaker regularization to warp closer
to the population “average” and obtain better segmentation accuracy.

Joint registration-segmentation algorithms are generally more effective than
sequential registration-segmentation as registration and segmentation benefit
from additional knowledge of each other [1, 12, 18, 19]. This paper proposes a
joint registration-segmentation framework with Markov Random Field (MRF)
priors on both segmentation labels and registration warps that incorporates mul-
tiple atlases. Our framework is an extension of Pohl et al. [12] and Fischl et al. [5].

Here we study the effect of atlas “sharpness” and warp regularization on
segmentation accuracy. In particular, we compare 3 specific cases: (1) progressive
registration of a new brain to increasingly “sharp” atlases using increasingly
flexible warps, by initializing each registration stage with the optimal warps from
a “blurrier” atlas; (2) progressive registration to a single atlas with increasingly
flexible warps; (3) registration to a single atlas with fixed constrained warps.

Another contribution of this paper is the consistency of the co-registration of
labeled images when computing the atlas and the normalization of an unlabeled
test image to the atlas, i.e., we treat the atlas creation and new subject regis-
tration within the same framework. Finally, to the best of our knowledge, this is
the first implementation of a joint registration-segmentation algorithm applied
to the labeling of the cerebral cortex.

2 Theory and Implementation

2.1 Joint Registration and Segmentation

We define an atlas Aα to be an atlas trained from images aligned with warp
smoothness parameter S = α. We distinguish between α and S since one can
use an atlas Aα for the registration of a subject with smoothness S where α 6= S.
Let R be the registration parameters, T be the image segmentation and Y be
the observed image features. We obtain the joint registration-segmentation of
a new image given a set of atlases Aα and smoothness S by maximizing the
Maximum-A-Posteriori (MAP) objective function:

(R∗, T ∗, S∗, A∗

α) = arg max
R,S,Aα,T

p(R, T, S, Aα|Y ) = arg max
R,S,Aα,T

p(R, T, S, Aα, Y ) (1)

where p(·) denotes probability. We can optimize Eq. (1) with coordinate ascent
by iteratively optimizing one of the variables while fixing the remaining vari-
ables. Unfortunately, each iteration only finds the posterior mode of a random
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variable while disregarding its entire posterior distribution. Instead, we consider
a variant of Eq. (1) where we marginalize over the segmentation T . Furthermore,
for simplicity, we assume a uniform prior on S and Aα or equivalently treat them
as non-random parameters, leading to the following formulation of the problem:

(R∗
, S

∗
, A

∗
α) = arg max

R,S,Aα

X

T

p(R,T, Y ; S, Aα) = arg max
R,S,Aα

log
X

T

p(R, T, Y ; S, Aα). (2)

This optimization can be solved by the Expectation-Maximization algorithm
with the segmentation T as a hidden variable. To reduce computation time,
instead of working with the continuous parameters α and S, we discretize S and
Aα into a finite set {S, Aα} = {S1 > S2 > · · · > SN , AS1

, AS2
· · ·ASN

}, where
larger values of α and S correspond to “blurrier” atlases and more restricted
warps, respectively. The optimization criterion then becomes

max
S,Aα

{

max
R

log
∑

T

p(R, T, Y ; S, Aα)
}

(3)

With enough samples, the finite set {S, Aα} should sufficiently represent the
underlying continuous space of atlases and warps. Given an unlabeled brain
with image features Y , we consider the following schemes:

1. Multiple Atlas, Multiple Warp Scales (MAMS): multiscale approach where
we optimize Eq. (3) w.r.t. R with “blurry” atlas AS1

and warp regularization
S1, and use that to initialize the registration with sharper atlas AS2

and warp
regularization S2, and so on.

2. Single Atlas, Multiple Warp Scales (SAMS): multiscale approach where we
optimize Eq. (3) w.r.t. R with a fixed atlas ASk

and warp regularization S1,
and use that to initialize the registration with the fixed atlas ASk

and warp
regularization S2, and so on.

3. Single Atlas, Single Warp Scale (SASS): Optimize Eq. (3) w.r.t. R with a
fixed atlas ASk

and warp regularization Sm, where k might not be equal to
m. This is most common in practice, especially when mixing and matching
publicly available atlases and in-house registration algorithms.

Note that for each scheme, we do not search over values of S or α, but instead
optimize the term within the curly brackets in Eq. (3), which we denote the
mixed Maximum-Likelihood Maximum-A-Posteriori (ML-MAP) function:

log
X

T

p(R, T, Y ; S, Aα) = log p(R;S, Aα) + log
X

T

p(T, Y |R; S, Aα) (4)

= log p(R;S) + log
X

T

p(T, Y |R; Aα) (5)

where we have modeled the registration parameters R to be conditionally in-
dependent of the atlas Aα given the scale S. We also assume that both the
segmentation T and the observation Y are independent of the scale S condi-
tioned on the atlas Aα and registration R. Eq. (5) corresponds to the standard
setup of the EM algorithm. In the E-step, we compute

Q(R; R(n)) = log p(R; S) +
∑

T

p(T |Y, R(n); Aα) log p(T, Y |R; Aα) (6)
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where registration R(n) is obtained from the previous M -step. In the M -step we
optimize Q(R, R(n)) with respect to registration R:

R
(n+1) = arg max

R

Q(R;R(n)) (7)

So far, the derivations have been general without any assumptions about the
atlases Aα, the prior p(R; S) or the image-segmentation fidelity p(T, Y |R; Aα).

2.2 Model Instantiation

We now apply the above framework to the joint registration-parcellation of corti-
cal brain surfaces, represented by triangular meshes with a spherical coordinate
system that minimizes metric distortion [4]. The aim is to register an unlabeled
cortical surface to a set of manually labeled surfaces and classify each vertex of
the triangular mesh into anatomical units.

We model the warp regularization with a MRF parameterized by S:

p(R;S) =
F (R)

Z1(S)
exp



− S

»

X

i

X

j∈Ni

„

dR
ij − d0

ij

d0
ij

«2–ff

(8)

where dR
ij is the distance between vertices i and j under registration R, d0

ij is

the original distance, Ni is a neighborhood of vertex i and Z1(S) is the partition
function. Our regularization penalizes metric distortion weighted by a scalar S
that reflects the amount of smoothness (rigidity) of the final warp. Function
F (·) ensures invertibility and is zero if any triangle is folded by warp R and one
otherwise. Similarly, we impose a MRF prior on the parcellation labels:

p(T, Y |R; Aα) = p(T |R;Aα)p(Y |T, R; Aα)

=
1

Z2(Aα)
exp



X

i

Ui(Ti; Aα) +
X

i

X

j∈Ni

V (Ti, Tj ; Aα)

ff

Y

i

p(Yi|Ti, R; Aα) (9)

where Ti and Yi are vertex i’s parcellation label and observation respectively.
The local potential Ui(Ti; Aα) captures the frequency of label Ti at vertex i. The
compatibility function V (Ti, Tj ; Aα) reflects the likelihood of labels Ti and Tj

being neighbors. Z2(Aα) is the partition function dependent on the atlas Aα.
Incorporating Eq. (8, 9) into Q(R; R(n)) of Eq. (6) and discarding all terms

independent of R yields (with some work!)

Q(R;R(n)) = log F (R) − S
X

i

X

j∈Ni

„

dR
ij − d0

ij

d0
ij

«2

+
X

i

X

Ti



p(Ti|Y, R
(n); Aα)Ui(Ti; Aα)

+

»

X

j∈Ni

p(Ti, Tj |Y, R
(n); Aα)V (Ti, Tj ; Aα)

–

+ p(Ti|Y, R
(n); Aα) log p(Yi|Ti, R; Aα)

ff

(10)

where the first term prevents folding triangles, the second term penalizes metric
distortion, the third and four terms are the Markov prior on the labels and the
last term is the likelihood of the surface geometries given the segmentation.

2.3 Atlas Building

In our framework, the atlas construction is consistent with the registration of
a new brain. Consider registering a training subject to the atlas ASk

under the
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smoothness Sk. Using the same objective function from before, the E-step is triv-
ial since we know the ground truth segmentation T ∗, and hence p(T |Y, R(n); Aα)
is the delta function δ(T ∗−T ). Simplifying the M-step gives (for each subject):

R
∗ = arg max

R

log p(R; Sk) + log p(T ∗
, Y |R; ASk

). (11)

We can then warp each subject to a common coordinate system via registration
R∗, and create atlas ASk

. However, since ASk
is unknown and yet appears on

the right hand side of Eq. (11), we solve Eq. (11) using a fixed-point iterative
method, where we initialize ASk

, solve for the best R∗, create a new atlas ASk

with R∗ and repeat until convergence. In practice, we first create an atlas A∞

after simple rigid-body registration and use it to initialize the creation of atlas
AS1

, where S1 corresponds to an almost rigid warp. We then use atlas AS1
to

initialize the creation of atlas AS2
where S1 > S2, and so on.

2.4 Implementation

The atlas AS is defined by the local potential U , compatibility potential V and
observation model p(Yi|Ti, R; Aα). Features Y (sulcal depth and mean curvature)
for the MRF and training follow that of Fischl et al. [5], except for simplicity,
we set V to be spatially stationary and isotropic.

Computing p(Ti|Y, R′; Aα) and p(Ti, Tj |Y, R′; Aα) is NP -hard. Mean field
approximation [6, 16] yields the following fixed-point iterative solution:

bi(k) ∝ e
Ui(k)+log p(Yi|Ti=k,R;Aα)+

P

j∈Ni

P

Tj
bj(Tj )[Vij(k,Tj)+Vji(Tj ,k)]

(12)

where bi(k) approximates the true belief p(Ti = k|Y, R′; Aα) and must be normal-
ized at the end of each step. Estimating p(Ti, Tj |Y, R′; Aα) requires a variation
of mean field [16]. To maximize over registration R in Eq. (10, 11), we warp each
vertex of the mesh individually, and use conjugate gradient ascent with parabolic
line search on a coarse to fine grid pyramid. The final segmentation is obtained
by selecting the label with the highest posterior probability p(Ti|Y, R∗; Aα) for
each vertex i and given atlas Aα.

3 Experiments
We consider 39 left hemispheres manually parcellated by a neuroanatomical
expert, consisting of 35 labels (see Fig. 1). We use dice measure to evaluate
segmentation quality and compare our results to the algorithm demonstrated
by Fischl et al. [5] and extensively validated by Desikan et al. [3]. The bench-
mark algorithm is essentially “Single Atlas, Single Warp Scale” (SASS), but with
sequential registration-segmentation and a more complex MRF model.

We perform cross-validation 4 times by leaving out subjects 1 to 10 in the
atlas construction, followed by joint registration-segmentation of subjects 1 to
10. We repeat with subjects 11 to 20, 21 to 30 and finally 31 to 39. We select S

to be the set {100, 50, 25, 12.5, 8, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05, 0.01}, where we find
that in practice, S = 100 corresponds to allowing minimal metric distortion and
S = 0.01 corresponds to allowing almost any distortion.

Fig. 2(a) shows a plot of average dice (defined as the ratio of cortical surface
area with correct labels to the total surface area averaged over the test set) for
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Lateral View Medial View

Fig. 1. Example of manual parcellation shown on a partially inflated cortical surface.
Note that our neuroanatomist prefer gyri labels to sulci labels. There are also regions
where sulci and gyri are grouped together as one label, such as the superior and inferior
parietal complexes. Some labels in the images are of different colors for contrast.

SAMS (Aα = A1) and MAMS as we vary S. The average dice peaks at S = 1
for all cross-validation trials, although individual variation exists (not shown).
Smaller values of regularization parameter S allow larger warps for the outlier
subjects because the tradeoff in the cost function is skewed towards data-fidelity
over regularization. However, it is surprising to find that the optimal S is mostly
constant across subjects.

In general, the mixed ML-MAP objective function of Eq. (3, 4) is not a good
measure of the optimal (S, α): the ML-MAP function continues to improve as S

decreases due to overfitting. Instead, we use dice as an independent measure of
selecting the optimal (S, α). Empirically, finding the best S for each individual
subject only improves the average dice minimally and hence, we are contented
with choosing S = 1.

Fig. 2(b) shows a plot of dice averaged over all 39 subjects. SAMS performs
the best for α = 1. For illustration, we see that SAMS with α = 0.01 starts off
well, but eventually overfits with a worse peak at S = 1 (p < 10−5 for one-sided
paired-sampled t-test). Similarly for SASS, the best α and S are both 1. We also
show SASS with α = 0.01 and S = 1 in Fig. 2(b). The differences among MAMS,
SAMS or SASS at their optimum, α = 1, S = 1, are not statistically significant.
On the other hand, their optimal performance is statistically significantly better
than the benchmark, with all p-values less than 10−4.

Because dice computed over the entire surface can be deceiving by suppress-
ing small structures, we show in Fig. 3a the dice for each individual structure
averaged over 39 subjects for MAMS (S = 1). The structures with the worst dice
are the frontal pole and corpus callosum. Fig. 3a also shows the difference in dice
between MAMS and the benchmark for each structure. For each structure, we
perform the one-sided paired-sampled t-test between MAMS and the bench-
mark, where each subject is considered a sample. Results are shown in Fig. 3(b).
Structures with p-values less than 0.05 are shown in dark blue. MAMS achieves
statistically significant improvement over the benchmark for 16 structures. For
the remaining 19 structures, the differences between the two segmentations are
not statistically significant.
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(a) Dice overlap vs. smoothness S (b) Overall Dice vs. smoothness S

Fig. 2. Summary of registration-segmentation results. S is plotted on a log scale.

The optimal SAMS and SASS perform similarly to optimal MAMS, which
is the unfortunate result of the local nature of gradient ascent. This is espe-
cially problematic on cortical surfaces where two adjacent sulci might appear
quite similar locally. Incorporating multiscale features with multiple warp scales
should therefore be more effective. Ultimately, however, a major hindrance is
the accuracy of the manual segmentation. In well-defined regions such as pre-
and post-central gyri, accuracy is already as high as 95% and within the range
of inter-rater variability. In ambiguous regions, such as the frontal pole, incon-
sistent manual segmentation leads to poor atlas and less accurate segmentation
validation.

Further work involves the application of our framework to other data sets
and experiment with other models of data fidelity and regularization. We expect
the optimal smoothness would change but it would be interesting to verify if the
optimal smoothness for a given experimental condition stays almost constant for
all subjects.

To conclude, we proposed a joint registration-segmentation framework that
incorporates consistent atlas construction, multiple atlases and MRF priors on
both registration warps and segmentation labels. We showed that atlas “sharp-
ness” and warp regularization are important factors in segmentation. With the
proper choice of atlas “sharpness” and warp regularization, even with a less
complex MRF model, the joint registration-segmentation framework has better
segmentation accuracy than the state-of-the-art benchmark algorithm.
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(a) Dice Measures (b) Spatial Map of Segmentation Improvement

Fig. 3. (a) Dice of MAMS (S = 1) for individual structures (left) and improvement
over the benchmark (right). (b) Spatial distribution of − log10(p), where p is the p-value
of the one-sided paired-sampled t-test between MAMS and the benchmark algorithm
for each structure. Structures with p-values below 0.05 are colored dark blue.
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