
 

 

 

Abstract 
 

We introduce the use of over-complete spherical 
wavelets for shape analysis of 2D closed surfaces. 
Bi-orthogonal spherical wavelets have been shown to be 
powerful tools in the segmentation and shape analysis of 2D 
closed surfaces, but unfortunately they suffer from aliasing 
problems and are therefore not invariant under rotations of 
the underlying surface parameterization. In this paper, we 
demonstrate the theoretical advantage of over-complete 
wavelets over bi-orthogonal wavelets and illustrate 
their utility on both synthetic and real data. In particular, we 
show that over-complete spherical wavelets allow us to 
build more stable cortical folding development models, and 
detect a wider array of regions of folding development in a 
newborn dataset. 
 

1. Introduction 
The Euclidean wavelet transform [1] is a powerful tool in 

image processing that decomposes a signal into component 
signals of different scales and spatial locations. It has been 
widely applied to compression, de-noising, and medical 
image analysis [2-4]. 

In the past decade, there has been much work on 
extending the general paradigm of linear filtering to the 
spherical domain. For example, the lifting scheme in [5] 
adopts a non-parametric approach to computing a wavelet 
decomposition of arbitrary meshes by generalizing the 
standard 2-scale relation of the Euclidean wavelets, 
enabling a multiscale representation of the original mesh 
(image) with excellent compression and speed performance. 
The resulting bi-orthogonal spherical wavelet transform has 
been successfully applied to the segmentation and shape 
analysis of 2D closed surfaces in medical imaging [6, 7]. In 
particular, the use of spherical wavelet transform in cortical 
shape analysis allows us to study cortical folds of different 
spatial scales, which are difficult to analyze by cortical 
folding analysis methods based on local features such as 
curvature and sulcal depth measurements. 

Unfortunately, the bi-orthogonal spherical wavelet 

transform is not rotationally invariant under rotations of the 
surface parameterization. Since we are considering 2D 
closed surfaces with spherical topology, a natural 
parameterization is a 1-1 mapping to the sphere. The 
rotation of surface parameterization refers to the rotation of 
the underlying spherical coordinate system. Figure 1 shows 
a toy example that illustrates the sensitivity of bi-orthogonal 
wavelets to the rotation of surface parameterization. We 
first generate a bump centered at the north pole on a sphere, 
as shown in Figure 1(a). We then apply the bi-orthogonal 
wavelet transform to both the original surface and the 
reparameterized surface where the spherical coordinate is 
rotated by an arbitrary angle. Figure 1(b) and 1(c) show the 
low level (coarse scale) bi-orthogonal wavelet coefficients 
that have significant magnitude before and after the rotation 
of surface parameterization. With the original 
parameterization, we can accurately detect the location of 
the bump since only the wavelet coefficient at the center of 
the bump has large magnitude, illustrated by a single bright 
spot in Figure 1(b). However, with the rotation of 
parameterization, two wavelet coefficients have significant 
magnitude, as shown by the two bright spots in Figure 1(c). 

The bi-orthogonal wavelet transform is not invariant 
under rotations of the underlying parameterization because 
it subsamples the signal progressively when decomposing it 
at the lower frequency (coarser) levels. This subsampling 
causes aliasing at all the single frequency levels although all 
the levels, when combined, add up to an invertible 
transform. This is problematic since being able to analyze 
the wavelet coefficients at each individual frequency level is 
one of the advantages of the wavelet transform. 
Consequently, surface analysis results can vary significantly 
with rotation of the surface parameterization and one loses 
the ability to more accurately localize geometric effects of 
interest. 

The aliasing of individual levels of orthogonal and 
bi-orthogonal wavelets is a well-known problem in the 
Euclidean domain. Over-complete wavelets, such as the 
steerable pyramid proposed by Simoncelli et al. [8], are 
useful for solving the aliasing problem. 

Recently, the corresponding steerable pyramid in the 
spherical domain was proposed by Antoine et al. [9] and 
discretized by Bogdanova et al. [10] for axis-symmetric 
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(b) (a) (c) (d)
Figure 1: The comparison of bi-orthogonal and 
over-complete spherical wavelets in detecting local shape 
variation. (a) Synthetic surface with a bump. (b) The 
bi-orthogonal wavelet coefficient that has the largest 
magnitude when the north pole of surface mesh is right 
underneath the center of bump. (c) The bi-orthogonal 
wavelet coefficients with large magnitude when the surface 
parameterization is rotated. (d) The over-complete wavelet 
coefficients that have the largest magnitude with or without 
the rotation of surface parameterization. 

wavelets. Unlike the steerable pyramid, their method of 
construction is grounded in group or representation theory.  
In this paper, we propose to use the over-complete wavelets 
introduced by Yeo et al. [11]. Their over-complete wavelets 
are based on filter bank theory, directly extending the ideas 
of Simoncelli to the sphere. In this work we only consider 
invertible axis-symmetric wavelets which are not 
necessarily self-invertible. We note that axis-symmetric 
spherical wavelets are symmetrical about the north pole. 

With the over-complete wavelet transform, we can 
always accurately detect the single bump, as shown in 
Figure 1(d), regardless of the rotation of the underlying 
surface parameterization. The over-complete wavelet 
transform achieves such invariance by sufficiently sampling 
at each level of the wavelet transform.  

In the following section, we introduce the construction of 
both wavelets, and theoretically prove the invariance 
property of the over-complete wavelet transform. In section 
3, we describe the use of both wavelets in building cortical 
folding development models in a newborn dataset. Finally 
in section 4, we show the advantage of the over-complete 
wavelets in providing more accurate and sensitive results 
for the folding development study.  

2. Methods 
For closed 2D surface that has a spherical topology, 

various methods have been developed to impose a spherical 
coordinate system on the surface [12, 13]. In the underlying 
spherical coordinate system, we can use 
{ }),(),,(),,( iiiiii ZYX φθφθφθ  to denote the set of mesh 

vertices indexed by i. Many parametric mesh 
representations have been proposed, including spherical 
harmonics [12], polynomials [14] and bi-orthogonal 
spherical wavelets [6, 7], to transform or decompose the 
individual coordinate functions ),(),,( iiii YX φθφθ and 

),( iiZ φθ separately.  

We employ the over-complete wavelet transform to 

define local decomposition of the surface. We use the 
resulting wavelet coefficients of the coordinates for shape 
analysis. Without loss of generality, we introduce both the 
bi-orthogonal and over-complete spherical wavelet 
transforms for a generic scalar spherical function ),( φθf  in 

the following two subsections. 

2.1. Bi-orthogonal spherical wavelet transform 

The bi-orthogonal spherical wavelets employed in this 
paper belong to the second generation wavelets, which no 
longer rely on the adaptive constructions based on 
traditional dilation and shifting, but still maintain the notion 
that a basis function at a certain level can be expressed as a 
linear combination of basis functions at a finer, more 
subdivided level.  

The construction of these spherical wavelets relies on a 
recursive subdivision of an icosahedron (subdivision level 
0). Denoting the set of all vertices on the mesh before the jth 
subdivision as K(j), a set of new vertices M(j) can be 
obtained by adding vertices at the midpoint of edges and 
connecting them with geodesics. Therefore, the complete 
set of vertices at the (j+1)th level is given by 

)()()1( jMjKjK U=+ . As a result, the number of vertices 

at level j is 2410 +× j , e.g., 12 vertices at level 0, 42 at level 
1, 162 at level 2, etc.  

Next, by using an interpolating subdivision scheme and 
the lifting scheme, we can construct a set of wavelet 
functions 

mj ,ψ  at levels Jj ,,1 K−=  and node 

)( jMm ∈ on the subdivided icosahedron surfaces. At the 

coarsest level -1, the wavelet functions are actually the 
scaling functions at the level 0, and we 
denote )0()1( KM =−  to facilitate notation. Any function f 

with finite energy can then be decomposed as a linear 
combination of these basis functions: 
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where 
mj ,γ  is the wavelet coefficient at level j and node 

)( jMm ∈ . 

In practice, we first interpolate the input spherical 
function onto a subdivided icosahedron mesh, and then 
carry out the forward and inverse wavelet transforms using 
the interpolation subdivision and lifting scheme, without 
explicit construction of the wavelet functions [5]. 

2.2. Over-complete spherical wavelet transform 

The construction of the over-complete spherical wavelet 
function is based on the general continuous filter bank 
theory [11]. Continuous spherical function ),( φθf  is 

projected onto the space of N spherical analysis filters 



 

 

{ }N

nnh 1),(
~

=φθ  by performing a spherical convolution between 

),( φθf  and each analysis filter ),(
~ φθnh .  

In the case of axis-symmetric spherical filters, the 
convolution outputs are also spherical images{ }N

nng 1),( =φθ . 

We can then perform an inverse spherical convolution 
between each convolution output ),( φθng and 

corresponding spherical synthesis filter ),( φθnh , and obtain 

a reconstructed image ),( φθf
)

 by summing the outputs of 

the inverse spherical convolution. The system of forward 
and inverse spherical convolutions, using analysis and 
synthesis filters respectively, is invertible if f

)
 is equal to f. 

We define the system of spherical filters to be an 
over-complete forward and inverse wavelet transform if it is 

invertible and the analysis filters { }N

nnh 1),(
~

=φθ  are dilated 

versions of a mother wavelet.  
For this work in particular, we choose the 

Laplacian-of-Gaussian on the plane as our mother wavelet. 
We then perform the usual dilation on the plane to generate 
the differently dilated daughter wavelets. At last, we 
stereographically project the set of wavelets onto the sphere 
to obtain the corresponding wavelet analysis filters. This 
process of dilation via the plane is known as stereographic 
dilation and is utilized because dilation on a sphere is 
necessarily non-linear [9-11]. 

Noting that the spherical harmonics are a set of 
orthonormal basis for functions on )( 22 SL  and denoting by 

hl,m the spherical harmonic coefficient of degree l and order 
m of a spherical function h, we define the synthesis filters to 
be  [11]: 
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Therefore, by using equation (2) and (3) to construct the 
synthesis filters, we ensure that our over-complete wavelets 
are invertible, as proved by Yeo et al. in [11]. 

Since our wavelet analysis filters are axis-symmetric, the 
forward and inverse continuous wavelet transform can be 
performed in the spherical harmonic domain [11, 15]. Thus, 
the original function f, the reconstructed function f

)
and the 

wavelet coefficient g can be represented by their spherical 
harmonic coefficients of degree l and order m as mlf , , mlf ,ˆ  

and mlg ,  respectively. 

Since the wavelet transform is conducted in the spherical 
harmonic domain, in practice, we first re-interpolate the 
surface mesh onto a latitude-longitude grid, and then use the 
publicly available program S2kit [16] to perform the fast 

discrete spherical harmonic transform [15]. Because the 
latitude-longitude grid is denser near the poles than at the 
equator, we ensure sufficient samples at the equator to avoid 
aliasing.  

Since the purpose of wavelet decomposition is to analyze 
the underlying function locally in both space and frequency, 
we use S2kit to transform the acquired wavelet coefficients 

ml
ng , at each level n back to the latitude-longitude 

grid { }),( jjng φθ . We note that the inverse spherical 

harmonic transform is invertible via the sampling theorem 
of Driscoll and Healy [15] and thus we do not lose any 
information by working in the spatial domain. Therefore, 
we can equivalently think of { }),( jjng φθ  as over-complete 

discrete wavelet transform. 
In some cases, it might be more efficient to analyze the 

wavelet coefficients on a more uniform grid. In our work, 
we re-interpolate the wavelet coefficients samples on the 
latitude-longitude grid onto a subdivided icosahedron grid 
of high enough resolution. In our experiments, the 
re-interpolating process has little effects on the analysis as 
long as the samples are sufficiently dense relative to the size 
of the geometric features of interest. 

2.3. Rotational invariance and aliasing 

 
2.3.1. Rotating the surface. For the purpose of shape 
analysis, we apply the wavelet transformation to the 
individual coordinate functions ),(),,( iiii YX φθφθ and 

),( iiZ φθ  separately. Since both the bi-orthogonal and the 

over-complete spherical wavelet transforms are linear, we 
can show that 
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where Φ  denotes the wavelet transform and )(⋅R  denotes a 

rotation operator that rotates a point in 3D. Applying )(⋅R  

to },,{ ZYX  therefore rotates the surface in 3D. 

Equation (4) implies that rotating a surface before the 
wavelet transformation is the same as applying a rotation 
after the wavelet transformation. Hence, both the 
bi-orthogonal and over-complete wavelet transforms are 
invariant under the rotation of 2D closed surfaces. 

 
2.3.2. Rotating the surface parameterization. In contrast, 
the bi-orthogonal wavelet transform is not invariant under 
rotations of the surface parameterization, as demonstrated 
in the Introduction Section. This is because at each 
subsequent lower frequency level (coarser resolution), the 
input to the bi-orthogonal wavelet transform is implicitly a 
smooth sub-sampled version of the original function. 
However, despite the smoothing, the number of samples is 



 

 

insufficient to prevent aliasing. Therefore, when the surface 
parameterization is rotated, the sub-sampled spherical 
function and thus the wavelet coefficients can change 
substantially. As a result, the bi-orthogonal wavelet 
coefficients are not invariant under rotations of the surface 
parameterization, and the shape analysis results based on 
the bi-orthogonal wavelet transform depend on the arbitrary 
choice of the parameterization frame (origins and axes).  

Because the bi-orthogonal spherical wavelet transform is 
computed implicitly rather than defined via sampling of the 
continuous convolution between a spherical function and 
the wavelet kernels, it is not trivial to artificially increase the 
number of samples at each level.  

Conversely, the over-complete spherical wavelets are 
invariant under the surface parameterization since each 
level of the wavelet transform is sufficiently sampled. 

Specifically, for the over-complete wavelet transform, we 
compute the wavelet coefficients gn at level n by convolving 
the spherical function f with level n analysis filter 

nh
~ .  Since 

the analysis filter is axis-symmetric, we can compute the 
convolution in the spherical harmonic domain as [17]: 
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Let Df be the rotation of the parameterization of a 
spherical image f by D. It can be shown that 
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where mm
lD ′ denotes the Wigner-D function associated with 

the rotation D [17]. Combining equations (5) and (6), we 
obtain: 
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Therefore, the over-complete wavelet transform is 
invariant under rotations of the underlying coordinate 
system. Although we sample the resulting wavelet transform 
as described in Section 2.2, the sampling theorem of 
Driscoll and Healy [15] ensures the process is lossless. 
Therefore the over-complete discrete wavelet transform is 
also rotationally invariant up to the spacing of the sampling 
grid. In practice, we over-sample to locate regions of 

interest to within the accuracy of the original surface 
parameterization, as described in Section 3.1. 

To illustrate the advantage of over-complete wavelets 
over the bi-orthogonal wavelets in shape analysis, we 
compare the results of cortical folding development study 
using both wavelets in the following sections. 

3. Experimental setup 

3.1. Data and preprocessing 

The dataset used in this study includes T1 weighted 3D 
MR images of eight normal neonates with corrected 
gestational ages (cGA) of 30.57, 31.1, 34, 37.71, 38.1, 38.4, 
39.72, and 40.43 weeks, and 3 children who were 2, 3 and 7 
years old (T2 weighted MR images not available for this 
dataset). We use Freesurfer [18] to preprocess this dataset, 
except that manual segmentation has to be done on the 
images of newborns due to inverted gray/white contrast. 
Based on the image segmentation, we reconstruct and refine 
the white/gray matter boundary, and use these white matter 
surfaces in our cortical shape analysis. We map the white 
matter surface onto a sphere and register all the surfaces in 
the spherical coordinate system [13, 19, 20]. We then apply 
a wavelet transform to the x, y and z coordinates of the 
surface points. Therefore, each output wavelet coefficient in 
this shape analysis is a vector with corresponding x, y and z 
components. In order to compare the bi-orthogonal and the 
over-complete wavelets in the cortical shape analysis, we 
generate a second set of white matter surfaces where the 
underlying spherical coordinate system is rotated by 30 
degree around the x- and y- axes respectively. 

For the bi-orthogonal wavelets used in this work, we 
employed the butterfly subdivision scheme and a lifting 
algorithm to ensure that the constructed wavelet function 
has one vanishing moment [5]. Before applying the wavelet 
transform, we first sample the registered white matter 
surfaces to an icosahedron at subdivision level 7 because it 
has a total number of 163,842 vertices and is thus 
sufficiently dense to represent the spherical map of a white 
matter surface reconstructed from ~1 mm isotropic MRI, 
which typically has about 120,000 vertices. Following the 
widely used convention, we index the resulting wavelet 
basis functions from level -1 to 6, and plot part of them in 
Figure 2(a). 

Level 0 Level 1 Level 2 Level 3 Level 4 Level 0 Level 1 Level 2 Level 3 Level 4

(a) (b) 

Figure 2. The wavelet basis functions of the (a) bi-orthogonal and (b) over-complete spherical wavelets at frequency levels 0-4.



 

 

For the over-complete wavelets, the smallest scale 
analysis filter is chosen to be the Laplacian of a Gaussian 
function with width 0.002 radian on the latitude-longitude 
grid. The wavelets at coarser levels are constructed by 
dilating the smallest scale wavelet subsequently by a factor 
of 2 each time. We index our over-complete wavelets from 
level -2 to 5 in order to match the spatial scales of the 
bi-orthogonal wavelets at the same levels, as shown in 
Figure 2(b). Before conducting the over-complete wavelet 
transform in the spherical harmonic domain using equation 
(5), we first sample the white matter surfaces onto a 
latitude-longitude grid of 106 points and then transform 
them to the spherical harmonic domain using S2kit [16]. 

Finally, we apply these two wavelet transforms to the 
white matter surfaces with both the original and the rotated 
parameterizations to study the influence of this rotation on 
the results of folding development study. 

3.2. Cortical folding development model 

To quantitatively study the cortical folding development,  
which starts slowly, and accelerates before slowing down to 
approach a limit, we apply the widely accepted Gompertz 
model to the white matter surface in the wavelet domain [7]. 
Specifically, if )(tw  is one of the spherical wavelet features 

extracted from a subject of age t , we use a Gompertz curve 
to model the evolution of this feature with age as follows: 
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ε                (8) 

where 
1b  is the maximum value at maturation, 

2b  is the 

growth rate that quantifies the speed of the folding 
development, 

3b  is the inflexion point that indicates the age 

of the fastest folding development, and )(tε  represents 

additive zero-mean noise. 
Due to the limited number of subjects available in this 

study, we apply a regularization framework for estimating 
parameter

1b , 
2b  and

3b  to avoid overfitting. In such a 

framework, we minimize a cost function: 
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where the second term is a scaled l2-norm regularizer. We 
select the scale factor from a collection of pre-specified 
values using leave-one-out cross-validation. We employ a 
quasi-Newton method based on the BFGS approximation 
[21] to estimate the parameters. 

To measure the goodness-of-fit of this model, we 
calculate the R2 statistic, the ratio of the sum of squares 
explained by the model and the total sum of squares around 
the mean: 
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We apply this regularized Gompertz model to study 
cortical folding development at different spatial resolutions 
in newborns based on the two types of spherical wavelets.  

4. Experimental results 

4.1. Overall folding development study 

We first fit the regularized Gompertz model to the 
wavelet power, which is defined to be the sum of squares of 
the l2-norm of each wavelet coefficient, i.e., the sum of 
squares of its x, y and z components, at each frequency level. 
We study the wavelet power to quantify changes of the 
overall cortical folding across the dataset at different spatial 
scales. 

As a result, we find that the wavelet power based on both 
bi-orthogonal and over-complete wavelets fit very well with 
the regularized Gompertz model at all levels. For both the 
original and rotated surface parameterization, the estimated 
maximum folding development age increases 
monotonically with frequency level, and the estimated 
development speed increases with frequency at some of 
levels as well. These results indicated that the larger scale 
cortical folds develop earlier, but with a slower speed, 
which is consistent with previous observation [7].  

However, the estimated parameters based on the 
bi-orthogonal wavelets vary with the rotation of the surface 
parameterization. As an example, Figure (3) shows that 
estimated Gompertz curves change significantly with the 
rotation. We can also see that this effect is more pronounced 
at the lower frequency levels since the surface is more 
severely sub-sampled at coarser resolutions. Here we 
present the results for the right hemisphere. We also observe 
the same effect for the left hemisphere. 

Since the over-complete wavelet transform is invariant 
under rotations of the surface parameterization, the 
resulting wavelet coefficients are only minimally altered by 
sampling on the latitude-longitude grid. The estimated 
folding development curves using over-complete wavelets 
remain unchanged under the rotation. Since the estimated 
development curves are virtually identical for the rotated 
representation, we choose to omit them for presentation. 

Furthermore, when we apply the bi-orthogonal wavelets 
to the white matter surfaces with rotated parameterization, 
we observed that the estimated maximum development age 
of the left hemisphere is younger than the right hemisphere 
at some frequency levels. However, this phenomenon is not 
observed before we rotate the surface parameterization 
using the bio-orthogonal wavelets. On the other hand, using 



 

 

the over-complete wavelets, we can clearly appreciate at all 
frequency levels that the left hemisphere leads the 
development of the right hemisphere, as shown in Figure 4. 
Although this finding has not been previously reported, it 
could potentially provide more insights into the study of 
cortical folding development. 
 These results show that the rotation-variant property of 
the bi-orthogonal wavelets presentation can lead to unstable 
shape analysis results, and conceal important neurological 
findings. 

4.2. Localizing regions of folding development 

Next, we fit the sum of squares of the x, y and z 
components of every single wavelet coefficient across 11 

subjects to the cortical folding development model. With 
this approach, we can discover not only when, but also 
where the folding of the white matter surface occurs at 
different spatial scales.  

Since the bi-orthogonal wavelets are directly constructed 
on the level 7 subdivided icosahedron mesh, we can take the 
wavelet coefficient that has a good fit to the folding 
development model ( 5.02 >R ) as the center of folding 
development region. However, since the over-complete 
wavelet transform is on the latitude-longitude grid, their 
wavelet coefficients are reinterpolated to a level 7 
subdivided icosahedron. At each frequency level, we 
segment connected regions of the coefficients that have a 

6.02 >R , and then select the vertex corresponding to the 
maximal R2 in each smoothed region as the center of an 
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Figure 3. Comparison of the predicted cortical folding development curves using surfaces with rotated parameterizations 
based on bi-orthogonal spherical wavelets. The curves are estimated using wavelet power at frequency levels 0 to 3 of the right 
hemisphere.  Horizontal axis is the actual age up to 45 weeks and vertical axis is the wavelet power with logarithmic (base 10) 
scale. 



 

 

effect of folding development. 
For each of the detected development centers, we 

determine the support region that represents 99% of the 
total energy of the associated wavelet basis function.  

To visualize these results, we superimpose the support 
regions of these selected wavelet coefficients on the 
youngest newborn white matter surface and color code them 
to reflect the estimated development speed and age of the 
corresponding wavelet coefficients, as shown in Figure 5. 
For points in the overlapped support regions of two or more 
wavelet basis functions, the estimated age and speed of the 
nearest wavelet function is assigned.  

As shown in the top two rows of Figure 5, using the 
bi-orthogonal wavelet, different cortical growth regions are 
detected before and after the rotation of surface 
parameterization. In contrast, using the over-complete 
wavelet, the detected regions of growth are slightly affected 
by the rotation of the underlying coordinate system, as 
shown in the bottom two rows of Figure 5. 

Furthermore, comparison of the colormaps generated 
based on both wavelets shows that more cortical regions are 
detected to fit well with the Gompertz curve by using the 
over-complete wavelets. This result is consistent with our 
visual inspection and the wavelet power study results, 
suggesting that over-complete wavelets are more sensitive 
for detecting regions of growth presented in this dataset. 
However, we are still exploring other methods to account 
for the grey regions that do not fit well with the current 
cortical folding development model. 

5. Conclusion 
We demonstrate in this paper that the over-complete 

spherical wavelets have significant advantages over 
bi-orthogonal spherical wavelets in the analysis of the 
geometric properties of cortical surfaces because of their 
invariance under rotations of the coordinate frame used to 
parameterize the 2D closed surfaces. We use the 
over-complete spherical wavelet transform to build folding 
development models based on a newborn dataset. The 
models reveal the temporal order of left and right 
hemispheres in the folding development, in addition to the 
speed, age and frequency correlation previously disclosed 
using the bi-orthogonal wavelets. Furthermore, we detect a 
wider array of regions of folding development using the 
over-complete spherical wavelet transform compared to the 
bi-orthogonal wavelets. Future work includes both 
validating and improving the current cortical folding 
development models with the inclusion of more data and 
extending the use of the over-complete spherical wavelets 
to statistical shape analysis and discrimination study. 
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Figure 5. The estimated folding development speed and maximum development ages for the left hemisphere using individual 
wavelets at different frequency levels. Colormaps encode the estimated development speed (1/week) and age of maximum 
development (weeks) of selected wavelet coefficients in the support regions of their corresponding wavelet basis functions. For 
points in the overlapped regions of two or more wavelet basis functions, the estimated age and speed of the closest wavelet 
function is assigned. Row 1-2: Estimated folding development speed and age at frequency levels 0 and 1 (top-down) of the 
original and reparameterized white matter surfaces (left-right) based on bi-orthogonal wavelets; Rows 3-4: Estimated folding 
development speed and age at frequency levels 0 and 1 (top-down) of the original and reparameterized white matter surfaces 
(left-right) based on over-complete wavelets. 


