/* fsl_glm - Christian F. Beckmann, FMRIB Analysis Group Copyright (C) 2006-2013 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ //Header & includes #include "libvis/miscplot.h" #include "miscmaths/miscmaths.h" #include "miscmaths/miscprob.h" #include "utils/options.h" #include #include "newimage/newimageall.h" #include "melhlprfns.h" #define message(msg) { \ if(verbose.value()) \ { \ cout << msg; \ } \ } #define dbgmsg(msg) { \ if(debug.value()) {\ cerr << msg << endl; } \ } #define outMsize(msg,Mat) { \ if(debug.value()) \ cerr << " " << msg << " " < fnin(string("-i,--in"), string(""), string(" input file name (text matrix or 3D/4D image file)"), true, requires_argument); Option fnout(string("-o,--out"), string(""), string("basename for output files "), true, requires_argument); Option approach(string("-a,--alg"), string("PCA"), string("algorithm for decomposition: PCA (or SVD; default), PLS, orthoPLS, CVA, SVD-CVA, MLM, NMF"), false, requires_argument); Option fndesign(string("-d,--design"), string(""), string("file name of the GLM design matrix (time courses or spatial maps)"), false, requires_argument); Option fnmask(string("-m,--mask"), string(""), string("mask image file name if input is image"), false, requires_argument); Option normdes(string("--des_norm"),FALSE, string("switch on normalisation of the design matrix columns to unit std. deviation"), false, no_argument); Option perfvn(string("--vn"),FALSE, string(" perform MELODIC variance-normalisation on data"), false, no_argument); Option perf_demean(string("--demean"),FALSE, string("switch on de-meaning of design and data"), false, no_argument); Option nmfdim(string("--nmf_dim"), 0, string(" Number of underlying factors for NMF"), false,requires_argument); Option nmfitt(string("--nmfitt"), 100, string("number of NMF itterations (default 100)"), false,requires_argument); Option help(string("-h,--help"), 0, string("display this help text"), false,no_argument); Option verbose(string("-v,--verbose"),FALSE, string("switch on verbose output"), false, no_argument); Option debug(string("--debug"),FALSE, string("switch on debug output"), false, no_argument, false); // Output options Option outres(string("--out_res"),string(""), string("output file name for residuals"), false, requires_argument, false); Option outdata(string("--out_data"),string(""), string("output file name for pre-processed data"), false, requires_argument); Option outvnscales(string("--out_vnscales"),string(""), string("output file name for scaling factors for variance normalisation"), false, requires_argument); //Globals Melodic::basicGLM glm; int voxels = 0; Matrix data, tmpdata; Matrix design; Matrix meanR; Matrix svd_X_U, svd_X_V, svd_Y_U, svd_Y_V; DiagonalMatrix svd_X_D, svd_Y_D; RowVector vnscales; volume mask; //////////////////////////////////////////////////////////////////////////// // Local functions void save4D(Matrix what, string fname){ if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){ volume4D tempVol; if(what.Nrows()>what.Ncols()) tempVol.setmatrix(what.t(),mask); else tempVol.setmatrix(what,mask); save_volume4D(tempVol,fname); } } bool isimage(Matrix what){ if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels)) return TRUE; else return FALSE; } void saveit(Matrix what, string fname){ if(isimage(what)) save4D(what,fname); else if(fsl_imageexists(fndesign.value())) write_ascii_matrix(what.t(),fname); else write_ascii_matrix(what,fname); } int setup(){ dbgmsg(" In "); message(" Reading data " << fnin.value() << " ... "); if(fsl_imageexists(fnin.value())){//read data //input is 3D/4D vol volume4D tmpdata; read_volume4D(tmpdata,fnin.value()); // create mask if(fnmask.value()>""){ read_volume(mask,fnmask.value()); if(!samesize(tmpdata[0],mask)){ cerr << "ERROR: Mask image does not match input image" << endl; return 1; }; }else{ mask = tmpdata[0]*0.0+1.0; } data = tmpdata.matrix(mask); voxels = data.Ncols(); if(perf_demean.value()) data = remmean(data,1); if(perfvn.value()) vnscales = Melodic::varnorm(data); } else data = read_ascii_matrix(fnin.value()); message("done" << endl;); if(fndesign.value().length()>0){ message(" Reading design " << fndesign.value() << " ... "); if(fsl_imageexists(fndesign.value())){//read design volume4D tmpdata; read_volume4D(tmpdata,fndesign.value()); if(!samesize(tmpdata[0],mask)){ cerr << "ERROR: GLM design does not match input image in size" << endl; return 1; } design = tmpdata.matrix(mask).t(); data = data.t(); }else{ design = read_ascii_matrix(fndesign.value()); } message("done" << endl;); }else design = ones(data.Nrows(),1); meanR=mean(data,1); if(perf_demean.value()){ data = remmean(data,1); design = remmean(design,1); } if(normdes.value()) design = SP(design,ones(design.Nrows(),1)*pow(stdev(design,1),-1)); SVD( design, svd_X_D, svd_X_U, svd_X_V ); if(approach.value()!=string("NMF")){ if(data.Nrows()>=data.Ncols()) SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V ); else{ SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U ); } } if(fnout.value().length() == 0){ string basename = fnin.value(); basename = make_basename(basename); fnout.set_T(basename+string("_mvlm_")); } outM("Data matrix : ", data); outM("Design matrix : ", design); dbgmsg(" initial SVD : "); outMsize("svd_Y_U",svd_Y_U); outMsize("svd_Y_V",svd_Y_V); outMsize("svd_Y_D",svd_Y_D); outMsize("svd_X_U",svd_X_U); outMsize("svd_X_V",svd_X_V); outMsize("svd_X_D",svd_X_D); dbgmsg(" Leaving "); return 0; } void write_res(){ dbgmsg(" In "); message(" Writing results ... ") if(isimage(svd_Y_V)){ saveit(svd_Y_V,fnout.value()+string("maps")); saveit(svd_Y_U,fnout.value()+string("tcs")); } else{ saveit(svd_Y_V.t(),fnout.value()+string("tcs")); saveit(svd_Y_U,fnout.value()+string("maps")); } saveit(svd_Y_D.AsColumn(),fnout.value()+string("scales")); if(outres.value()>"") if(outdata.value()>"") saveit(data,outdata.value()); if(outvnscales.value()>"") saveit(vnscales,outvnscales.value()); message("done" << endl;); dbgmsg(" Leaving "); } int do_work(int argc, char* argv[]) { dbgmsg(" In "); if(setup()) exit(1); //modify data //X = svd_X_U * svd_X_D * svd_X_V.t(); //Y = svd_Y_U * svd_Y_D * svd_Y_V.t(); //X'X = svd_X_V *pow(svd_X_D,2) * svd_X_V.t(); //(X'X)^(-1) = svd_X_V *pow(svd_X_D,-2) * svd_X_V.t() //(X'X)^(-1/2) = svd_X_V *pow(svd_X_D,-1) * svd_X_V.t() if(approach.value()==string("PLS")) { message(" Using method : " << approach.value() << endl;); data = design.t() * data; } if(approach.value()==string("orthoPLS")) { message(" Using method : " << approach.value() << endl;); data = (svd_X_V * svd_X_D.i() * svd_X_V.t()) * design.t() * data; } if(approach.value()==string("CVA")) { message(" Using method : " << approach.value() << endl;); data = design.t() * svd_Y_U * svd_Y_V.t(); data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data; } if(approach.value()==string("SVD-CVA")) { message(" Using method : " << approach.value() << endl;); tmpdata = data; data = design.t() * svd_Y_U; data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data; } if(approach.value()==string("MLM")) { message(" Using method : " << approach.value() << endl;); Matrix RE; DiagonalMatrix RD; SymmetricMatrix tmp; tmp << cov(data.t()); EigenValues(tmp,RD,RE); // S = RE * RD * RE.t() tmp << sqrtm(svd_X_V * svd_X_D * svd_X_U.t() * RE * RD * RE.t() *svd_X_U * svd_X_D * svd_X_V.t()); data = tmp.i()*design.t() * data; } if( approach.value()!=string("MLM") && approach.value()!=string("CVA") && approach.value()!=string("PLS") && approach.value()!=string("SVD-CVA") && approach.value()!=string("orthoPLS") && approach.value()!=string("NMF")) message(" Using method : PCA" << endl;); //perform an SVD on data outMsize(" New Data ", data); if(approach.value()!=string("NMF")){ if(data.Nrows()>=data.Ncols()) SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V ); else{ SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U ); svd_Y_U = svd_Y_U.t(); svd_Y_V = svd_Y_V.t(); } dbgmsg(" Finished SVD : "); outMsize("svd_Y_U",svd_Y_U); outMsize("svd_Y_V",svd_Y_V); outMsize("svd_Y_D",svd_Y_D); svd_Y_V = sqrtm(svd_Y_D) * svd_Y_V; svd_Y_U = svd_Y_U * sqrtm(svd_Y_D); if(approach.value()==string("SVD-CVA")) svd_Y_V = svd_Y_V *tmpdata; } else{ //NMF float err, err_old; Matrix Ratio, Diff; if(nmfdim.value()==0) nmfdim.set_T(data.Nrows()); message("Using "<< nmfdim.value() << " dimensions" << endl;); svd_Y_U = unifrnd(data.Nrows(), nmfdim.value()); svd_Y_V = unifrnd(nmfdim.value(), data.Ncols()); // re-scale columns of svd_Y_U to unit amplitude Ratio = pow(stdev(svd_Y_U),-1); svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio); Diff = data - svd_Y_U * svd_Y_V; err = Diff.SumAbsoluteValue()/(data.Ncols()*data.Nrows()); for(int k=1; k< nmfitt.value(); k++) { // Ratio = SP(data,pow(svd_Y_U * svd_Y_V,-1)); // svd_Y_U = SP(svd_Y_U, Ratio * svd_Y_V.t()); // svd_Y_U = SP(svd_Y_U, pow( ones(svd_Y_U.Nrows(),1) * sum(svd_Y_U,1),-1)); // svd_Y_V = SP(svd_Y_V, svd_Y_U.t()* Ratio); // // Lee & Seung multiplicatice updates Ratio = SP(svd_Y_U.t() * data, pow(svd_Y_U.t() * svd_Y_U * svd_Y_V ,-1)); svd_Y_V = SP(svd_Y_V,Ratio); Ratio = SP(data * svd_Y_V.t(),pow(svd_Y_U * (svd_Y_V * svd_Y_V.t()),-1)); svd_Y_U = SP(svd_Y_U,Ratio); // re-scale columns of svd_Y_U to unit amplitude Ratio = pow(stdev(svd_Y_U),-1); svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio); Diff = data - svd_Y_U * svd_Y_V; err_old = err; err = Diff.SumSquare()/(data.Ncols()*data.Nrows()); message(" Error " << err << endl;); } } write_res(); dbgmsg(" Leaving "); return 0; } //////////////////////////////////////////////////////////////////////////// int main(int argc,char *argv[]){ Tracer tr("main"); OptionParser options(title, examples); try{ // must include all wanted options here (the order determines how // the help message is printed) options.add(fnin); options.add(fnout); options.add(approach); options.add(fndesign); options.add(fnmask); options.add(normdes); options.add(perfvn); options.add(perf_demean); options.add(nmfdim); options.add(nmfitt); options.add(help); options.add(verbose); options.add(debug); options.add(outres); options.add(outdata); options.add(outvnscales); options.parse_command_line(argc, argv); // line below stops the program if the help was requested or // a compulsory option was not set if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){ options.usage(); exit(EXIT_FAILURE); }else{ // Call the local functions return do_work(argc,argv); } } catch(X_OptionError& e){ options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); } catch(std::exception &e){ cerr << e.what() << endl; } }