/* fsl_glm - Christian F. Beckmann, FMRIB Analysis Group Copyright (C) 2008-2013 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "libvis/miscplot.h" #include "miscmaths/miscmaths.h" #include "miscmaths/miscprob.h" #include "utils/options.h" #include #include "newimage/newimageall.h" #include "melhlprfns.h" using namespace MISCPLOT; using namespace MISCMATHS; using namespace Utilities; using namespace std; // The two strings below specify the title and example usage that is // printed out as the help or usage message string title=string("fsl_sbca (Version 1.0)")+ string("\nAuthor: Christian F. Beckmann \nCopyright(C) 2008-2013 University of Oxford \n")+ string(" \n Performs seed-based correlation analysis on FMRI data\n")+ string(" using either a single seed coordinate or a seed mask \n")+ string(" "); string examples="fsl_sbca -i -s -t -o [options]"; //Command line Options { Option fnin(string("-i,--in"), string(""), string(" input file name (4D image file)"), true, requires_argument); Option fnout(string("-o,--out"), string(""), string("output file base name"), true, requires_argument); Option fnseed(string("-s,--seed"), string(""), string("seed voxel coordinate or file name of seed mask (3D/4D file)"), true, requires_argument); Option fntarget(string("-t,--target"), string(""), string("file name of target mask(s) (3D or 4D file)"), true, requires_argument); Option regress_only(string("-r,--reg"), false, string("perform time series regression rather than classification to targets"), false, no_argument); Option fnconf(string("--conf"), string(""), string(" file name (or comma-separated list of file name) for confound ascii txt files"), false, requires_argument); Option fnseeddata(string("--seeddata"), string(""), string("file name of 4D data file for the seed"), false, requires_argument); Option map_bin(string("--bin"), false, string(" binarise spatial maps prior to calculation of time courses"), false, no_argument); Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option tc_mean(string("--mean"), false, string(" use mean instead of Eigenvariates for calculation of time courses"), false, no_argument); Option tc_order(string("--order"), 1, string(" number of Eigenvariates (default 1)"), false, requires_argument); Option abscc(string("--abscc"), false, string(" use maximum absolute value instead of of maximum value of the cross-correlations"), false, no_argument); Option out_seeds(string("--out_seeds"), false, string("output seed mask image as _seeds"), false, no_argument); Option out_seedmask(string("--out_seedmask"), false, string("output seed mask image as _seedmask"), false, no_argument); Option out_ttcs(string("--out_ttcs"), false, string("output target time courses as _ttc.txt"), false, no_argument); Option out_conf(string("--out_conf"), false, string("output confound time courses as _confounds.txt"), false, no_argument); Option out_tcorr(string("--out_tcorr"), false, string("output target correlations as _tcorr.txt"), false, no_argument, false); Option help(string("-h,--help"), 0, string("display this help text"), false,no_argument); Option debug(string("--debug"), false, string(" switch on debug messages"), false, no_argument, false); /* } */ //Globals { Matrix data, confounds; volume4D orig_data; volume maskS, maskT; int voxels = 0; Matrix seeds, coords; vector ttcs; Matrix out1, out2; /* } */ //////////////////////////////////////////////////////////////////////////// // Local functions void save4D(Matrix what, volume& msk, string fname){ if(debug.value()) cerr << "DBG: in save4D" << endl; volume4D tempVol; tempVol.setmatrix(what,msk); save_volume4D(tempVol,fname); } void save4D(volume& in, string fname){ if(debug.value()) cerr << "DBG: in save4D" << endl; volume4D tempVol; tempVol.addvolume(in); save_volume4D(tempVol,fname); } ReturnMatrix create_coords(string what){ if(debug.value()) cerr << "DBG: in create_coords" << endl; Matrix res; ifstream fs(what.c_str()); if (!fs) { Matrix tmp(1,3); char *p; char t[1024]; const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?"; strcpy(t, what.c_str()); p=strtok(t,discard); tmp(1,1) = atoi(p); p=strtok(NULL,discard); tmp(1,2) = atoi(p); p=strtok(NULL,discard); tmp(1,3) = atoi(p); res = tmp; do{ p=strtok(NULL,discard); if(p){ tmp(1,1) = atoi(p); p=strtok(NULL,discard); tmp(1,2) = atoi(p); p=strtok(NULL,discard); tmp(1,3) = atoi(p); res &= tmp; } }while(p); }else{ res = read_ascii_matrix(fs); fs.close(); } if(res.Ncols()!=3){ cerr << "ERROR: incorrect format " << what << endl; exit(1); } // if(verbose.value()) // cout << " Created seed coordinates (size: " << res.Nrows() << " x " << res.Ncols() << ")" << endl; res.Release(); return res; } void create_mask(string what){ if(debug.value()) cerr << "DBG: in create_mask" << endl; coords = create_coords(what); maskS = orig_data[0] * 0.0; for(int ctr = 1; ctr <= coords.Nrows(); ctr++) maskS(coords(ctr,1),coords(ctr,2),coords(ctr,3)) = 1.0; maskS.binarise(1e-8); } void create_seeds(string what){ if(debug.value()) cerr << "DBG: in create_seeds" << endl; volume4D tmp_vol; if(fsl_imageexists(what)){ read_volume4D(tmp_vol,what); maskS = tmp_vol[0]; if(!samesize(orig_data[0],maskS)){ cerr << "ERROR: Seed mask image does not match input image" << endl; exit(1); } } else create_mask(what); if(tmp_vol.tsize() > 1 && tmp_vol.tsize() == orig_data.tsize()){ maskS *= tmp_vol[0] / tmp_vol.tsize(); for(int ctr=1; ctr < tmp_vol.tsize(); ctr++) maskS += tmp_vol[ctr] * tmp_vol[ctr] / tmp_vol.tsize(); maskS.binarise(1e-8); seeds = remmean(tmp_vol.matrix(maskS),1); } else{ volume4D tmp_mask; tmp_mask.addvolume(maskS); maskS.binarise(1e-8); if(fnseeddata.value()>"" && fsl_imageexists(fnseeddata.value())){ volume4D seed_data; if(verbose.value()) cout << " Reading input data for seeds " << fnseeddata.value() << endl; read_volume4D(seed_data,fnseeddata.value()); seeds = remmean(seed_data.matrix(maskS),1); }else{ seeds = remmean(orig_data.matrix(maskS),1); if(!map_bin.value()){ Matrix scales = tmp_mask.matrix(maskS); seeds = SP(seeds, ones(seeds.Nrows(),1) * scales); } } } voxels = seeds.Ncols(); if(debug.value()){ cerr << "DBG: " << voxels << " voxels" << endl; cerr << "DBG: seeds matrix is " << seeds.Nrows() << " x " << seeds.Ncols() << endl; } if(verbose.value()) cout << " Created seed time courses " << endl; } ReturnMatrix create_confs(string what){ if(debug.value()) cerr << "DBG: in create_confs" << endl; Matrix res, tmp; char *p; char t[1024]; const char *discard = ","; strcpy(t, what.c_str()); p=strtok(t,discard); res = remmean(read_ascii_matrix(string(p)),1); do{ p=strtok(NULL,discard); if(p){ tmp = read_ascii_matrix(string(p)); if(tmp.Nrows()!=res.Nrows()){ cerr << "ERROR: confound matrix" << string(p) << " is of wrong size "<< endl; exit(1); } res |= remmean(tmp,1); } }while(p); if(verbose.value()) cout << " Created confound matrix (size: " << res.Nrows() << " x " << res.Ncols() << ")" << endl; res.Release(); return res; } ReturnMatrix calc_ttc(volume& in){ if(debug.value()) cerr << "DBG: in calc_ttc" << endl; Matrix res, tmp, scales; volume tmp1; volume4D tmp2; tmp1 = in; tmp1.binarise(1e-8); maskT += tmp1; tmp2.addvolume(in); scales = tmp2.matrix(tmp1); tmp = remmean(orig_data.matrix(tmp1),1); if(!map_bin.value()) tmp = SP(tmp, ones(tmp.Nrows(),1) * scales); if(tc_mean.value()) res = mean(tmp,2); else{ SymmetricMatrix Corr; Corr << tmp * tmp.t() / tmp.Ncols(); DiagonalMatrix tmpD; EigenValues(Corr,tmpD,res); res = fliplr(res.Columns(res.Ncols()-tc_order.value()+1 , res.Ncols())) * std::sqrt(tmp.Nrows()); Matrix res2 = mean(tmp,2); if(debug.value()) cerr << "DBG: mean size is " << res2.Nrows() << " x " << res2.Ncols() << endl; res2 = res2.Column(1).t() * res.Column(1); if((float)res2.AsScalar() < 0){ res = -1.0 * res; if(debug.value()) cerr << "DBG: flipping first eigenvariates" << endl; } } if(debug.value()) cerr << "DBG: size is " << res.Nrows() << " x " << res.Ncols() << endl; res.Release(); return res; } void create_target_tcs(){ if(debug.value()) cerr << "DBG: in create_target_tcs" << endl; volume4D tmptarg; read_volume4D(tmptarg,fntarget.value()); maskT = orig_data[0] * 0.0; for(int ctr=0; ctr < tmptarg.tsize(); ctr++){ ttcs.push_back(calc_ttc(tmptarg[ctr])); } if(debug.value()) { cerr << "DBG: " << ttcs.size() << " target matrices created " << endl; } if(verbose.value()) cout << " Created target mask time courses " << endl; } int setup(){ if(debug.value()) cerr << "DBG: in setup" << endl; if(fsl_imageexists(fnin.value())){ //read data if(verbose.value()) cout << " Reading input file " << fnin.value() << endl; read_volume4D(orig_data,fnin.value()); } else{ cerr << "ERROR: Invalid input file " << fnin.value() << endl; exit(1); } create_seeds(fnseed.value()); if(!regress_only.value()) create_target_tcs(); else{ volume4D tmptarg; read_volume4D(tmptarg,fntarget.value()); maskT = tmptarg[0]; maskT.binarise(1e-8); data = orig_data.matrix(maskT); data = remmean(data,1); } if(fnconf.value()>"") confounds = create_confs(fnconf.value()); return 0; } ReturnMatrix calc_tcorr(int in){ if(debug.value()) cerr << "DBG: in calc_tcorr" << endl; Matrix res = zeros(1,seeds.Ncols()), partial_conf, targetcol; for(int ctr = 0; ctr < (int)ttcs.size(); ctr++) if(ctr != in){ if(partial_conf.Storage() == 0) partial_conf = ttcs.at(ctr); else partial_conf |= ttcs.at(ctr); } if(ttcs.at(in).Ncols()>1) { if(partial_conf.Storage()>0) partial_conf = ttcs.at(in).Columns(2,ttcs.at(in).Ncols()) | partial_conf; else partial_conf = ttcs.at(in).Columns(2,ttcs.at(in).Ncols()); } if(confounds.Storage() > 0) { if(partial_conf.Storage()>0) partial_conf |= confounds; else partial_conf = confounds; } if(debug.value() && partial_conf.Storage()>0) cerr << "DBG: partial_conf " << partial_conf.Nrows() << " x " << partial_conf.Ncols() << endl; targetcol = ttcs.at(in).Column(1); if(debug.value()) cerr << "DBG: targetcol " << targetcol.Nrows() << " x " << targetcol.Ncols() << endl; for(int ctr = 1; ctr <= seeds.Ncols(); ctr++) res(1,ctr) = Melodic::corrcoef(targetcol, seeds.Column(ctr), partial_conf).AsScalar(); res.Release(); return res; } void calc_res(){ if(debug.value()) cerr << "DBG: in calc_res" << endl; out2 = zeros(1,seeds.Ncols()); if(!regress_only.value()){ //Target TCs exist if(verbose.value()) cout << " Calculating partial correlation scores between seeds and targets " << endl; Matrix tmp; int tmp2; out1=zeros(ttcs.size(),seeds.Ncols()); for(int ctr = 0 ;ctr < (int)ttcs.size(); ctr++) out1.Row(ctr+1) = calc_tcorr(ctr); for(int ctr = 1 ;ctr <= out1.Ncols(); ctr++){ if(!abscc.value()){ out1.Column(ctr).Maximum1(tmp2); out2(1,ctr) = tmp2; }else { out1.Column(ctr).MaximumAbsoluteValue1(tmp2); out2(1,ctr) = tmp2; } } if(debug.value()){ cerr << "DBG: out1 " << out1.Nrows() << " x " << out1.Ncols() << endl; cerr << "DBG: out2 " << out2.Nrows() << " x " << out2.Ncols() << endl; } } else{ //no Target TCs if(verbose.value()) cout << " Calculating partial correlation maps " << endl; out1 = zeros(seeds.Ncols(), data.Ncols()); if(confounds.Storage()>0){ data = data - confounds * pinv(confounds) * data; seeds = seeds - confounds * pinv(confounds) * seeds; } if(debug.value()){ cerr << "DBG: seeds " << seeds.Nrows() << " x " << seeds.Ncols() << endl; cerr << "DBG: data " << data.Nrows() << " x " << data.Ncols() << endl; } for(int ctr = 1 ;ctr <= seeds.Ncols(); ctr++){ Matrix tmp; if(coords.Storage()>0){ tmp = orig_data.voxelts(coords(ctr,1), coords(ctr,2), coords(ctr,3)); volume4D tmpVol; tmpVol.setmatrix(out2,maskS); tmpVol( coords(ctr,1), coords(ctr,2), coords(ctr,3), 0) = ctr; out2 = tmpVol.matrix(maskS); if(confounds.Storage()>0) tmp = tmp - confounds * pinv(confounds) * tmp; } else{ tmp = seeds.Column(ctr); out2(1,ctr) = ctr; } for(int ctr2 =1; ctr2 <= data.Ncols(); ctr2++) out1(ctr,ctr2) = Melodic::corrcoef(tmp,data.Column(ctr2)).AsScalar(); } if(debug.value()){ cerr << "DBG: out1 " << out1.Nrows() << " x " << out1.Ncols() << endl; cerr << "DBG: out2 " << out2.Nrows() << " x " << out2.Ncols() << endl; } } } void write_res(){ if(verbose.value()) cout << " Saving results " << endl; if(debug.value()) cerr << "DBG: in write_res" << endl; if(regress_only.value()){ save4D(out2,maskS, fnout.value()+"_index"); save4D(out1,maskT, fnout.value()+"_corr"); } else{ save4D(out1,maskS, fnout.value()+"_corr"); save4D(out2,maskS, fnout.value()+"_index"); } if(out_ttcs.value() && ttcs.size()>0) for(int ctr = 0 ;ctr < (int)ttcs.size(); ctr++) write_ascii_matrix(ttcs.at(ctr),fnout.value()+"_ttc"+num2str(ctr+1)+".txt"); if(out_conf.value() && confounds.Storage()>0) write_ascii_matrix(confounds, fnout.value()+"_confounds.tx"); if(out_seeds.value()) save4D(seeds, maskS, fnout.value()+"_seeds"); if(out_seedmask.value()) save4D(maskS,fnout.value()+"_seedmask"); } int do_work(int argc, char* argv[]) { if(setup()) exit(1); calc_res(); write_res(); return 0; } //////////////////////////////////////////////////////////////////////////// int main(int argc,char *argv[]){ Tracer tr("main"); OptionParser options(title, examples); try{ // must include all wanted options here (the order determines how // the help message is printed) options.add(fnin); options.add(fnseed); options.add(fnout); options.add(fntarget); options.add(regress_only); options.add(fnconf); options.add(fnseeddata); options.add(map_bin); options.add(tc_mean); options.add(abscc); options.add(tc_order); options.add(out_seeds); options.add(out_seedmask); options.add(out_ttcs); options.add(out_conf); options.add(out_tcorr); options.add(verbose); options.add(help); options.add(debug); options.parse_command_line(argc, argv); // line below stops the program if the help was requested or // a compulsory option was not set if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){ options.usage(); exit(EXIT_FAILURE); }else{ // Call the local functions return do_work(argc,argv); } }catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); }catch(std::exception &e) { cerr << e.what() << endl; } }